Suppr超能文献

基于随机效应预测因子对个体进行分类。多中心艾滋病队列研究。

Classifying individuals based on predictors of random effects. Multicenter AIDS Cohort Study.

作者信息

Lyles R H, Xu J

机构信息

Department of Epidemiology, Johns Hopkins School of Hygiene and Public Health, Baltimore, MD 21205, USA.

出版信息

Stat Med. 1999 Jan 15;18(1):35-52. doi: 10.1002/(sici)1097-0258(19990115)18:1<35::aid-sim995>3.0.co;2-#.

Abstract

Often one wishes to describe individuals according to whether their average exposure over a period of time is above or below some meaningful threshold. In this article, we treat predictors of random effects as diagnostic tools to aid in such classification, given that the true unobservable mean exposure for each of a set of individuals is defined according to a mixed linear model. Viewing candidate predictors in this light engenders the consideration of a unique set of performance criteria, and invites the use of nomenclature commonly used by epidemiologists and decision analysts to evaluate diagnostic techniques. We describe these criteria analytically and graphically under a random effects analysis of variance model, with the expressed goal of classifying subjects with regard to their true mean. Given knowledge of the model parameters, we compare typical predictors and illustrate the fact that completely new alternatives can arise depending on the particular set of criteria emphasized. We include a brief simulation study in which we also compare prediction methods according to various classification criteria, after incorporating estimates of the unknown model parameters. We provide two examples using data from participants in the Multicenter AIDS Cohort Study. In the first example, we seek to classify HIV seronegative individuals based on their mean diastolic blood pressure. In the second, via a natural extension to a randomized regression model, we classify HIV seropositive individuals according to their CD4+ slope over time.

摘要

通常,人们希望根据个体在一段时间内的平均暴露水平高于或低于某个有意义的阈值来对其进行描述。在本文中,鉴于一组个体中每个个体真正不可观测的平均暴露水平是根据混合线性模型定义的,我们将随机效应的预测变量视为有助于此类分类的诊断工具。从这个角度看待候选预测变量会引发对一组独特性能标准的考虑,并促使使用流行病学家和决策分析师常用的术语来评估诊断技术。我们在随机效应方差分析模型下,通过分析和图形描述这些标准,明确目标是根据个体的真实均值对其进行分类。在已知模型参数知识的情况下,我们比较典型的预测变量,并说明根据所强调的特定标准集可能会出现全新替代方案这一事实。我们进行了一项简短的模拟研究,在纳入未知模型参数的估计值后,我们还根据各种分类标准比较了预测方法。我们提供了两个使用多中心艾滋病队列研究参与者数据的例子。在第一个例子中,我们试图根据HIV血清阴性个体的平均舒张压对其进行分类。在第二个例子中,通过对随机回归模型的自然扩展,我们根据HIV血清阳性个体随时间变化的CD4 +斜率对其进行分类。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验