Suppr超能文献

非线性混合效应群体模型中的收缩:量化、影响因素及影响。

Shrinkage in nonlinear mixed-effects population models: quantification, influencing factors, and impact.

机构信息

Advanced PKPD Modeling and Simulation, Clinical Pharmacology, Janssen Research and Development, Titusville, New Jersey, USA.

出版信息

AAPS J. 2012 Dec;14(4):927-36. doi: 10.1208/s12248-012-9407-9. Epub 2012 Sep 20.

Abstract

Shrinkage of empirical Bayes estimates (EBEs) of posterior individual parameters in mixed-effects models has been shown to obscure the apparent correlations among random effects and relationships between random effects and covariates. Empirical quantification equations have been widely used for population pharmacokinetic/pharmacodynamic models. The objectives of this manuscript were (1) to compare the empirical equations with theoretically derived equations, (2) to investigate and confirm the influencing factor on shrinkage, and (3) to evaluate the impact of shrinkage on estimation errors of EBEs using Monte Carlo simulations. A mathematical derivation was first provided for the shrinkage in nonlinear mixed effects model. Using a linear mixed model, the simulation results demonstrated that the shrinkage estimated from the empirical equations matched those based on the theoretically derived equations. Simulations with a two-compartment pharmacokinetic model verified that shrinkage has a reversed relationship with the relative ratio of interindividual variability to residual variability. Fewer numbers of observations per subject were associated with higher amount of shrinkage, consistent with findings from previous research. The influence of sampling times appeared to be larger when fewer PK samples were collected for each individual. As expected, sample size has very limited impact on shrinkage of the PK parameters of the two-compartment model. Assessment of estimation error suggested an average 1:1 relationship between shrinkage and median estimation error of EBEs.

摘要

混合效应模型中后验个体参数的经验贝叶斯估计(EBE)的收缩会掩盖随机效应之间以及随机效应与协变量之间的明显相关性。经验量化方程已广泛用于群体药代动力学/药效动力学模型。本文的目的是:(1)比较经验方程和理论推导方程,(2)研究和确认对收缩的影响因素,(3)使用蒙特卡罗模拟评估收缩对 EBE 估计误差的影响。首先为非线性混合效应模型中的收缩提供了数学推导。使用线性混合模型,模拟结果表明,经验方程估计的收缩与基于理论推导方程的收缩相匹配。使用两室药代动力学模型的模拟验证了收缩与个体间变异性与残差变异性的相对比值呈反向关系。每个受试者的观测次数越少,收缩的幅度就越大,这与先前的研究结果一致。对于每个个体采集的 PK 样本较少时,采样时间的影响似乎更大。正如预期的那样,样本量对两室模型 PK 参数的收缩影响非常有限。对估计误差的评估表明,收缩与 EBE 中位数估计误差之间存在平均 1:1 的关系。

相似文献

引用本文的文献

本文引用的文献

4
Diagnosing model diagnostics.诊断模型诊断
Clin Pharmacol Ther. 2007 Jul;82(1):17-20. doi: 10.1038/sj.clpt.6100241.
6
Population modelling in drug development.药物研发中的群体建模
Stat Methods Med Res. 1999 Sep;8(3):183-93. doi: 10.1177/096228029900800302.
10
Some suggestions for measuring predictive performance.一些关于衡量预测性能的建议。
J Pharmacokinet Biopharm. 1981 Aug;9(4):503-12. doi: 10.1007/BF01060893.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验