Suppr超能文献

超极化激活氯离子通道门控对氯离子的依赖性

Chloride dependence of hyperpolarization-activated chloride channel gates.

作者信息

Pusch M, Jordt S E, Stein V, Jentsch T J

机构信息

Centre for Molecular Neurobiology (ZMNH), University of Hamburg, Hamburg, Germany.

出版信息

J Physiol. 1999 Mar 1;515 ( Pt 2)(Pt 2):341-53. doi: 10.1111/j.1469-7793.1999.341ac.x.

Abstract
  1. ClC proteins are a class of voltage-dependent Cl- channels with several members mutated in human diseases. The prototype ClC-0 Torpedo channel is a dimeric protein; each subunit forms a pore that can gate independently from the other one. A common slower gating mechanism acts on both pores simultaneously; slow gating activates ClC-0 at hyperpolarized voltages. The ClC-2 Cl- channel is also activated by hyperpolarization, as are some ClC-1 mutants (e.g. D136G) and wild-type (WT) ClC-1 at certain pH values. 2. We studied the dependence on internal Cl- ([Cl-]i) of the hyperpolarization-activated gates of several ClC channels (WT ClC-0, ClC-0 mutant P522G, ClC-1 mutant D136G and an N-terminal deletion mutant of ClC-2), by patch clamping channels expressed in Xenopus oocytes. 3. With all these channels, reducing [Cl-]i shifted activation to more negative voltages and reduced the maximal activation at most negative voltages. 4. We also investigated the external halide dependence of WT ClC-2 using two-electrode voltage-clamp recording. Reducing external Cl- ([Cl-]o) activated ClC-2 currents. Replacing [Cl-]o by the less permeant Br- reduced channel activity and accelerated deactivation. 5. Gating of the ClC-2 mutant K566Q in normal [Cl-]o resembled that of WT ClC-2 in low [Cl-]o, i.e. channels had a considerable open probability (Po) at resting membrane potential. Substituting external Cl- by Br- or I- led to a decrease in Po. 6. The [Cl-]i dependence of the hyperpolarization-activated gates of various ClC channels suggests a similar gating mechanism, and raises the possibility that the gating charge for the hyperpolarization-activated gate is provided by Cl-. 7. The external halide dependence of hyperpolarization-activated gating of ClC-2 suggests that it is mediated or modulated by anions as in other ClC channels. In contrast to the depolarization-activated fast gates of ClC-0 and ClC-1, the absence of Cl- favours channel opening. Lysine 556 may be important for the relevant binding site.
摘要
  1. ClC蛋白是一类电压依赖性氯离子通道,其多个成员在人类疾病中发生了突变。原型ClC-0鱼雷通道是一种二聚体蛋白;每个亚基形成一个孔道,该孔道可独立于另一个孔道进行门控。一种常见的较慢门控机制同时作用于两个孔道;慢门控在超极化电压下激活ClC-0。ClC-2氯离子通道也可被超极化激活,一些ClC-1突变体(如D136G)和野生型(WT)ClC-1在特定pH值下也是如此。2. 我们通过膜片钳技术研究了几种ClC通道(野生型ClC-0、ClC-0突变体P522G、ClC-1突变体D136G和ClC-2的N端缺失突变体)超极化激活门控对细胞内氯离子浓度([Cl-]i)的依赖性,这些通道在非洲爪蟾卵母细胞中表达。3. 对于所有这些通道,降低[Cl-]i会使激活向更负的电压偏移,并降低在最负电压下的最大激活程度。4. 我们还使用双电极电压钳记录法研究了野生型ClC-2对细胞外卤化物的依赖性。降低细胞外氯离子浓度([Cl-]o)会激活ClC-2电流。用通透性较低的溴离子(Br-)取代[Cl-]o会降低通道活性并加速失活。5. 在正常[Cl-]o条件下,ClC-2突变体K566Q的门控类似于低[Cl-]o条件下野生型ClC-2的门控,即通道在静息膜电位时有相当大的开放概率(Po)。用Br-或I-取代细胞外氯离子会导致Po降低。6. ClC通道超极化激活门控对[Cl-]i的依赖性表明存在类似的门控机制,并增加了超极化激活门控的门控电荷由氯离子提供的可能性。7. ClC-2超极化激活门控对细胞外卤化物的依赖性表明,它与其他ClC通道一样,由阴离子介导或调节。与ClC-0和ClC-1的去极化激活快速门控不同,缺乏氯离子有利于通道开放。赖氨酸556可能对相关结合位点很重要。

相似文献

1
Chloride dependence of hyperpolarization-activated chloride channel gates.
J Physiol. 1999 Mar 1;515 ( Pt 2)(Pt 2):341-53. doi: 10.1111/j.1469-7793.1999.341ac.x.
2
Concentration and pH dependence of skeletal muscle chloride channel ClC-1.
J Physiol. 1996 Dec 1;497 ( Pt 2)(Pt 2):423-35. doi: 10.1113/jphysiol.1996.sp021778.
3
Inward rectification in ClC-0 chloride channels caused by mutations in several protein regions.
J Gen Physiol. 1997 Aug;110(2):165-71. doi: 10.1085/jgp.110.2.165.
4
Electrostatic control and chloride regulation of the fast gating of ClC-0 chloride channels.
J Gen Physiol. 2003 Nov;122(5):641-51. doi: 10.1085/jgp.200308846.
5
The voltage-dependent ClC-2 chloride channel has a dual gating mechanism.
J Physiol. 2004 Mar 16;555(Pt 3):671-82. doi: 10.1113/jphysiol.2003.060046. Epub 2004 Jan 14.
6
Permeant anions contribute to voltage dependence of ClC-2 chloride channel by interacting with the protopore gate.
J Physiol. 2010 Jul 15;588(Pt 14):2545-56. doi: 10.1113/jphysiol.2010.189175. Epub 2010 May 24.
7
Analysis of a protein region involved in permeation and gating of the voltage-gated Torpedo chloride channel ClC-0.
J Physiol. 1997 Feb 1;498 ( Pt 3)(Pt 3):691-702. doi: 10.1113/jphysiol.1997.sp021893.
8
Gating of the voltage-dependent chloride channel CIC-0 by the permeant anion.
Nature. 1995 Feb 9;373(6514):527-31. doi: 10.1038/373527a0.
10
Quantitative analysis of the voltage-dependent gating of mouse parotid ClC-2 chloride channel.
J Gen Physiol. 2005 Dec;126(6):591-603. doi: 10.1085/jgp.200509310. Epub 2005 Nov 14.

引用本文的文献

2
Distinct ClC-6 and ClC-7 Cl sensitivities provide insight into ClC-7's role in lysosomal Cl homeostasis.
J Physiol. 2023 Dec;601(24):5635-5653. doi: 10.1113/JP285431. Epub 2023 Nov 8.
4
The Integral Role of Chloride & With-No-Lysine Kinases in Cell Volume Regulation & Hypertension.
Int J Nephrol Renovasc Dis. 2023 Aug 14;16:183-196. doi: 10.2147/IJNRD.S417766. eCollection 2023.
6
Dynamical model of the CLC-2 ion channel reveals conformational changes associated with selectivity-filter gating.
PLoS Comput Biol. 2020 Mar 30;16(3):e1007530. doi: 10.1371/journal.pcbi.1007530. eCollection 2020 Mar.
7
Pathogenesis of hypertension in a mouse model for human CLCN2 related hyperaldosteronism.
Nat Commun. 2019 Oct 15;10(1):4678. doi: 10.1038/s41467-019-12113-9.
8
Structure of the human ClC-1 chloride channel.
PLoS Biol. 2019 Apr 25;17(4):e3000218. doi: 10.1371/journal.pbio.3000218. eCollection 2019 Apr.
9
A gain-of-function mutation in the CLCN2 chloride channel gene causes primary aldosteronism.
Nat Genet. 2018 Mar;50(3):355-361. doi: 10.1038/s41588-018-0053-8. Epub 2018 Feb 5.
10
The signaling role for chloride in the bidirectional communication between neurons and astrocytes.
Neurosci Lett. 2019 Jan 10;689:33-44. doi: 10.1016/j.neulet.2018.01.012. Epub 2018 Jan 9.

本文引用的文献

1
Pore stoichiometry of a voltage-gated chloride channel.
Nature. 1998 Aug 13;394(6694):687-90. doi: 10.1038/29319.
2
Determinants of slow gating in ClC-0, the voltage-gated chloride channel of Torpedo marmorata.
Am J Physiol. 1998 Apr;274(4):C966-73. doi: 10.1152/ajpcell.1998.274.4.C966.
3
Permeation and block of the skeletal muscle chloride channel, ClC-1, by foreign anions.
J Gen Physiol. 1998 May;111(5):653-65. doi: 10.1085/jgp.111.5.653.
4
ClC and CFTR chloride channel gating.
Annu Rev Physiol. 1998;60:689-717. doi: 10.1146/annurev.physiol.60.1.689.
5
Characterization of the hyperpolarization-activated chloride current in dissociated rat sympathetic neurons.
J Physiol. 1998 Feb 1;506 ( Pt 3)(Pt 3):665-78. doi: 10.1111/j.1469-7793.1998.665bv.x.
6
Pore-forming segments in voltage-gated chloride channels.
Nature. 1997 Dec 4;390(6659):529-32. doi: 10.1038/37391.
7
Characterization of an inwardly rectifying chloride conductance expressed by cultured rat cortical astrocytes.
Glia. 1997 Oct;21(2):217-27. doi: 10.1002/(sici)1098-1136(199710)21:2<217::aid-glia5>3.0.co;2-3.
8
Mutations in the chloride channel gene, CLCNKB, cause Bartter's syndrome type III.
Nat Genet. 1997 Oct;17(2):171-8. doi: 10.1038/ng1097-171.
9
Chloride channels cough up.
Nat Genet. 1997 Oct;17(2):125-7. doi: 10.1038/ng1097-125.
10
Independent gating of single pores in CLC-0 chloride channels.
Biophys J. 1997 Aug;73(2):789-97. doi: 10.1016/S0006-3495(97)78111-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验