Kaysen J H, Campbell W C, Majewski R R, Goda F O, Navar G L, Lewis F C, Goodwin T J, Hammond T G
Nephrology Section, Department of Medicine and Tulane Environmental Astrobiology Center, Tulane/Xavier Center for Bioenvironmental Research, 1430 Tulane Avenue, New Orleans, LA 70112, USA.
J Membr Biol. 1999 Mar 1;168(1):77-89. doi: 10.1007/s002329900499.
The rotating wall vessel has gained popularity as a clinical cell culture tool to produce hormonal implants. It is desirable to understand the mechanisms by which the rotating wall vessel induces genetic changes, if we are to prolong the useful life of implants. During rotating wall vessel culture gravity is balanced by equal and opposite hydrodynamic forces including shear stress. The current study provides the first evidence that shear stress response elements, which modulate gene expression in endothelial cells, are also active in epithelial cells. Rotating wall culture of renal cells changes expression of select gene products including the giant glycoprotein scavenger receptors cubulin and megalin, the structural microvillar protein villin, and classic shear stress response genes ICAM, VCAM and MnSOD. Using a putative endothelial cell shear stress response element binding site as a decoy, we demonstrate the role of this sequence in the regulation of selected genes in epithelial cells. However, many of the changes observed in the rotating wall vessel are independent of this response element. It remains to define other genetic response elements modulated during rotating wall vessel culture, including the role of hemodynamics characterized by 3-dimensionality, low shear and turbulence, and cospatial relation of dissimilar cell types.
旋转壁式生物反应器作为一种用于生产激素植入物的临床细胞培养工具已受到广泛关注。如果我们想要延长植入物的使用寿命,就需要了解旋转壁式生物反应器诱导基因变化的机制。在旋转壁式生物反应器培养过程中,重力由包括剪切应力在内的大小相等、方向相反的流体动力所平衡。本研究首次证实,在内皮细胞中调节基因表达的剪切应力反应元件,在上皮细胞中也具有活性。肾细胞的旋转壁式培养可改变某些基因产物的表达,这些基因产物包括巨大糖蛋白清道夫受体立方体细胞素和巨膜蛋白、结构微绒毛蛋白绒毛蛋白,以及经典的剪切应力反应基因细胞间黏附分子(ICAM)、血管细胞黏附分子(VCAM)和锰超氧化物歧化酶(MnSOD)。利用一个假定的内皮细胞剪切应力反应元件结合位点作为诱饵,我们证明了该序列在上皮细胞中对特定基因调控的作用。然而,在旋转壁式生物反应器中观察到的许多变化与该反应元件无关。仍有待确定在旋转壁式生物反应器培养过程中受到调节的其他基因反应元件,包括三维性、低剪切力和湍流等血流动力学特征以及不同细胞类型的共空间关系所起的作用。