Suppr超能文献

用于癌症生存分析的混合模型:在具有协变量的基于人群的数据中的应用。

Mixture models for cancer survival analysis: application to population-based data with covariates.

作者信息

De Angelis R, Capocaccia R, Hakulinen T, Soderman B, Verdecchia A

机构信息

Istituto Superiore di Sanità, Laboratory of Epidemiology and Biostatistics, Roma, Italy.

出版信息

Stat Med. 1999 Feb 28;18(4):441-54. doi: 10.1002/(sici)1097-0258(19990228)18:4<441::aid-sim23>3.0.co;2-m.

Abstract

The interest in estimating the probability of cure has been increasing in cancer survival analysis as the curability of many cancer diseases is becoming a reality. Mixture survival models provide a way of modelling time to death when cure is possible, simultaneously estimating death hazard of fatal cases and the proportion of cured case. In this paper we propose an application of a parametric mixture model to relative survival rates of colon cancer patients from the Finnish population-based cancer registry, and including major survival determinants as explicative covariates. Disentangling survival into two different components greatly facilitates the analysis and the interpretation of the role of prognostic factors on survival patterns. For example, age plays a different role in determining, from one side, the probability of cure, and, from the other side, the life expectancy of fatal cases. The results support the hypothesis that observed survival trends are really due to a real prognostic gain for more recently diagnosed patients.

摘要

随着许多癌症疾病的可治愈性成为现实,在癌症生存分析中,对估计治愈概率的兴趣日益增加。混合生存模型提供了一种在可能治愈的情况下对死亡时间进行建模的方法,同时估计致命病例的死亡风险和治愈病例的比例。在本文中,我们提出将参数混合模型应用于来自芬兰基于人群的癌症登记处的结肠癌患者的相对生存率,并将主要生存决定因素作为解释性协变量纳入。将生存分解为两个不同的组成部分极大地促进了对预后因素在生存模式中的作用的分析和解释。例如,年龄在确定治愈概率和致命病例的预期寿命方面发挥着不同的作用。结果支持这样的假设,即观察到的生存趋势确实是由于最近诊断的患者真正的预后改善。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验