Moerner W E, Orrit M
Department of Chemistry, Stanford University, Stanford, CA 94305-5080, USA.
Science. 1999 Mar 12;283(5408):1670-6. doi: 10.1126/science.283.5408.1670.
Efficient collection and detection of fluorescence coupled with careful minimization of background from impurities and Raman scattering now enable routine optical microscopy and study of single molecules in complex condensed matter environments. This ultimate method for unraveling ensemble averages leads to the observation of new effects and to direct measurements of stochastic fluctuations. Experiments at cryogenic temperatures open new directions in molecular spectroscopy, quantum optics, and solid-state dynamics. Room-temperature investigations apply several techniques (polarization microscopy, single-molecule imaging, emission time dependence, energy transfer, lifetime studies, and the like) to a growing array of biophysical problems where new insight may be gained from direct observations of hidden static and dynamic inhomogeneity.
高效收集和检测荧光,同时仔细将杂质和拉曼散射产生的背景降至最低,现在使得在复杂凝聚态环境中对单分子进行常规光学显微镜观察和研究成为可能。这种揭示系综平均值的终极方法能够观察到新效应,并直接测量随机涨落。低温下的实验为分子光谱学、量子光学和固态动力学开辟了新方向。室温研究将多种技术(偏振显微镜、单分子成像、发射时间依赖性、能量转移、寿命研究等)应用于越来越多的生物物理问题,在这些问题中,通过直接观察隐藏的静态和动态不均匀性可能会获得新的见解。