Lichtenthaler S F, Wang R, Grimm H, Uljon S N, Masters C L, Beyreuther K
Center for Molecular Biology, University of Heidelberg, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany.
Proc Natl Acad Sci U S A. 1999 Mar 16;96(6):3053-8. doi: 10.1073/pnas.96.6.3053.
Proteolytic processing of the amyloid precursor protein by beta-secretase yields A4CT (C99), which is cleaved further by the as yet unknown gamma-secretase, yielding the beta-amyloid (Abeta) peptide with 40 (Abeta40) or 42 residues (Abeta42). Because the position of gamma-secretase cleavage is crucial for the pathogenesis of Alzheimer's disease, we individually replaced all membrane-domain residues of A4CT outside the Abeta domain with phenylalanine, stably transfected the constructs in COS7 cells, and determined the effect of these mutations on the cleavage specificity of gamma-secretase (Abeta42/Abeta40 ratio). Compared with wild-type A4CT, mutations at Val-44, Ile-47, and Val-50 led to decreased Abeta42/Abeta40 ratios, whereas mutations at Thr-43, Ile-45, Val-46, Leu-49, and Met-51 led to increased Abeta42/Abeta40 ratios. A massive effect was observed for I45F (34-fold increase) making this construct important for the generation of animal models for Alzheimer's disease. Unlike the other mutations, A4CT-V44F was processed mainly to Abeta38, as determined by mass spectrometry. Our data provide a detailed model for the active site of gamma-secretase: gamma-secretase interacts with A4CT by binding to one side of the alpha-helical transmembrane domain of A4CT. Mutations in the transmembrane domain of A4CT interfere with the interaction between gamma-secretase and A4CT and, thus, alter the cleavage specificity of gamma-secretase.
淀粉样前体蛋白经β-分泌酶进行蛋白水解加工产生A4CT(C99),其再被尚不清楚的γ-分泌酶进一步切割,产生含有40个残基(Aβ40)或42个残基(Aβ42)的β-淀粉样肽(Aβ)。由于γ-分泌酶切割的位置对阿尔茨海默病的发病机制至关重要,我们将A4CT在Aβ结构域外的所有膜结构域残基逐个替换为苯丙氨酸,在COS7细胞中稳定转染构建体,并确定这些突变对γ-分泌酶切割特异性(Aβ42/Aβ40比率)的影响。与野生型A4CT相比,缬氨酸-44、异亮氨酸-47和缬氨酸-50处的突变导致Aβ42/Aβ40比率降低,而苏氨酸-43、异亮氨酸-45、缬氨酸-46、亮氨酸-49和甲硫氨酸-51处的突变导致Aβ42/Aβ40比率升高。观察到I45F有巨大影响(增加34倍),这使得该构建体对阿尔茨海默病动物模型的建立很重要。与其他突变不同,通过质谱测定,A4CT-V44F主要加工为Aβ38。我们的数据为γ-分泌酶的活性位点提供了一个详细模型:γ-分泌酶通过结合到A4CT的α-螺旋跨膜结构域的一侧与A4CT相互作用。A4CT跨膜结构域中的突变干扰了γ-分泌酶与A4CT之间的相互作用,从而改变了γ-分泌酶的切割特异性。