Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden.
Centre for Translational Microbiome Research and National Pandemic Center, Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
Mol Psychiatry. 2023 Sep;28(9):3966-3981. doi: 10.1038/s41380-023-02289-4. Epub 2023 Nov 1.
Accumulation of amyloid β-peptide (Aβ) is a driver of Alzheimer's disease (AD). Amyloid precursor protein (App) knock-in mouse models recapitulate AD-associated Aβ pathology, allowing elucidation of downstream effects of Aβ accumulation and their temporal appearance upon disease progression. Here we have investigated the sequential onset of AD-like pathologies in App and App knock-in mice by time-course transcriptome analysis of hippocampus, a region severely affected in AD. Strikingly, energy metabolism emerged as one of the most significantly altered pathways already at an early stage of pathology. Functional experiments in isolated mitochondria from hippocampus of both App and App mice confirmed an upregulation of oxidative phosphorylation driven by the activity of mitochondrial complexes I, IV and V, associated with higher susceptibility to oxidative damage and Ca-overload. Upon increasing pathologies, the brain shifts to a state of hypometabolism with reduced abundancy of mitochondria in presynaptic terminals. These late-stage mice also displayed enlarged presynaptic areas associated with abnormal accumulation of synaptic vesicles and autophagosomes, the latter ultimately leading to local autophagy impairment in the synapses. In summary, we report that Aβ-induced pathways in App knock-in mouse models recapitulate key pathologies observed in AD brain, and our data herein adds a comprehensive understanding of the pathologies including dysregulated metabolism and synapses and their timewise appearance to find new therapeutic approaches for AD.
淀粉样β肽(Aβ)的积累是阿尔茨海默病(AD)的驱动因素。淀粉样前体蛋白(App)敲入小鼠模型再现了与 AD 相关的 Aβ病理学,从而能够阐明 Aβ积累的下游效应及其在疾病进展过程中的出现时间。在这里,我们通过对海马体(AD 严重受影响的区域)进行的时间过程转录组分析,研究了 App 和 App 敲入小鼠中类似 AD 的病理学的顺序发生。令人惊讶的是,能量代谢已经成为病理学早期最显著改变的途径之一。来自 App 和 App 小鼠海马体的分离线粒体的功能实验证实,由线粒体复合物 I、IV 和 V 的活性驱动的氧化磷酸化被上调,与更高的氧化损伤和 Ca 过载易感性相关。随着病理学的增加,大脑会进入低代谢状态,突触前末梢中的线粒体丰度降低。这些晚期小鼠还显示出增大的突触前区域,与突触囊泡和自噬体的异常积累有关,后者最终导致突触中的局部自噬受损。总之,我们报告说,App 敲入小鼠模型中的 Aβ 诱导途径再现了 AD 大脑中观察到的关键病理学,我们的数据在此增加了对失调代谢和突触及其时间出现的病理学的全面理解,以找到 AD 的新治疗方法。