Suppr超能文献

Biochemical and molecular characteristics of the brain with developing cerebral infarction.

作者信息

Kato H, Kogure K

机构信息

Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.

出版信息

Cell Mol Neurobiol. 1999 Feb;19(1):93-108. doi: 10.1023/a:1006920725663.

Abstract
  1. We review the biochemical and molecular changes in brain with developing cerebral infarction, based on recent findings in experimental focal cerebral ischemia. 2. Occlusion of a cerebral artery produces focal ischemia with a gradual decline of blood flow, differentiating a severely ischemic core where infarct develops rapidly and an area peripheral to the core where the blood flow reduction is moderate (called penumbra). Neuronal injury in the penumbra is essentially reversible but only for several hours. The penumbra area tolerates a longer duration of ischemia than the core and may be salvageable by pharmacological agents such as glutamate antagonists or prompt reperfusion. 3. Upon reperfusion, brain cells alter their genomic properties so that protein synthesis becomes restricted to a small number of proteins such as stress proteins. Induction of the stress response is considered to be a rescue program to help to mitigate neuronal injury and to endow the cells with resistance to subsequent ischemic stress. The challenge now is to determine how the neuroprotection conferred by prior sublethal ischemia is achieved so that rational strategies can be developed to detect and manipulate gene expression in brain cells vulnerable to ischemia. 4. Expansion of infarction may be caused by an apoptotic mechanism. Investigation of apoptosis may also help in designing novel molecular strategies to prevent ischemic cell death. 5. Ischemia/reperfusion injury is accompanied by inflammatory reactions induced by neutrophils and monocytes/macrophages infiltrated and accumulated in ischemic areas. When the role of the inflammatory/immune systems in ischemic brain injury is revealed, new therapeutic targets and agents will emerge to complement and synergize with pharmacological intervention directed against glutamate and Ca2+ neurotoxicity.
摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验