Suppr超能文献

表征即对相似性的表征。

Representation is representation of similarities.

作者信息

Edelman S

机构信息

Department of Brain and Cognitive Sciences, Massachussetts Institute of Technology, Cambridge 02142, USA.

出版信息

Behav Brain Sci. 1998 Aug;21(4):449-67; discussion 467-98. doi: 10.1017/s0140525x98001253.

Abstract

Advanced perceptual systems are faced with the problem of securing a principled (ideally, veridical) relationship between the world and its internal representation. I propose a unified approach to visual representation, addressing the need for superordinate and basic-level categorization and for the identification of specific instances of familiar categories. According to the proposed theory, a shape is represented internally by the responses of a small number of tuned modules, each broadly selective for some reference shape, whose similarity to the stimulus it measures. This amounts to embedding the stimulus in a low-dimensional proximal shape space spanned by the outputs of the active modules. This shape space supports representations of distal shape similarities that are veridical as Shepard's (1968) second-order isomorphisms (i.e., correspondence between distal and proximal similarities among shapes, rather than between distal shapes and their proximal representations). Representation in terms of similarities to reference shapes supports processing (e.g., discrimination) of shapes that are radically different from the reference ones, without the need for the computationally problematic decomposition into parts required by other theories. Furthermore, a general expression for similarity between two stimuli, based on comparisons to reference shapes, can be used to derive models of perceived similarity ranging from continuous, symmetric, and hierarchical ones, as in multidimensional scaling (Shepard 1980), to discrete and nonhierarchical ones, as in the general contrast models (Shepard & Arabie 1979; Tversky 1977).

摘要

先进的感知系统面临着确保世界与其内部表征之间建立有原则(理想情况下是如实的)关系的问题。我提出了一种统一的视觉表征方法,以满足对上级和基本层次分类以及识别熟悉类别的特定实例的需求。根据所提出的理论,形状在内部由少量调谐模块的响应来表征,每个模块对某种参考形状具有广泛的选择性,其与它所测量的刺激的相似性。这相当于将刺激嵌入到由活动模块的输出所跨越的低维近端形状空间中。这个形状空间支持如实反映谢泼德(1968年)二阶同构的远端形状相似性的表征(即形状之间远端和近端相似性之间的对应关系,而不是远端形状与其近端表征之间的对应关系)。基于与参考形状的相似性的表征支持对与参考形状截然不同的形状进行处理(例如辨别),而无需其他理论所要求的计算上有问题的分解为部分。此外,基于与参考形状的比较的两个刺激之间相似性的一般表达式可用于推导从连续、对称和层次化的(如在多维缩放中,谢泼德1980年)到离散和非层次化的(如在一般对比模型中,谢泼德和阿拉比1979年;特沃斯基1977年)感知相似性模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验