Robbins Arryn, Hout Michael C, Ercolino Ashley, Schmidt Joseph, Godwin Hayward J, MacDonald Justin
Department of Psychology, University of Richmond, 114 UR Drive, Rm 113, Richmond, VA, 27303, USA.
Department of Psychology, New Mexico State University, Las Cruces, NM, USA.
Behav Res Methods. 2025 Jun 30;57(8):212. doi: 10.3758/s13428-025-02732-0.
Visual similarity is an essential concept in vision science, and the methods used to quantify similarity have recently expanded in the areas of human-derived ratings and computer vision methodologies. Researchers who want to manipulate similarity between images (e.g., in a visual search, categorization, or memory task) often use the aforementioned methods, which require substantial, additional data collection prior to the primary task of interest. To alleviate this problem, we have developed an openly available database that uses multidimensional scaling (MDS) to model the similarity among 1200 items spread across 20 object categories, thereby allowing researchers to utilize similarity ratings within and between categories. In this article, we document the development of this database, including (1) collecting similarity ratings using the spatial arrangement method across two sites, (2) our computational approach with MDS, and (3) validation of the MDS space by comparing SpAM-derived distances to direct similarity ratings. The database and similarity data provided between items (and across categories) will be useful to researchers wanting to manipulate or control similarity in their studies.
视觉相似性是视觉科学中的一个重要概念,用于量化相似性的方法最近在人工评级和计算机视觉方法领域有所扩展。想要操纵图像之间相似性的研究人员(例如,在视觉搜索、分类或记忆任务中)通常会使用上述方法,这些方法在主要感兴趣的任务之前需要大量额外的数据收集。为了缓解这个问题,我们开发了一个公开可用的数据库,该数据库使用多维缩放(MDS)对分布在20个对象类别中的1200个项目之间的相似性进行建模,从而使研究人员能够利用类别内和类别间的相似性评级。在本文中,我们记录了这个数据库的开发过程,包括(1)在两个地点使用空间排列方法收集相似性评级,(2)我们使用MDS的计算方法,以及(3)通过将基于空间排列模型(SpAM)得出的距离与直接相似性评级进行比较来验证MDS空间。该数据库以及项目之间(和跨类别)提供的相似性数据将对希望在其研究中操纵或控制相似性的研究人员有用。