Bastida A, Sabuquillo P, Armisen P, Fernandez-Lafuente R, Huguet J, Guisan JM
Departamento de Biocatalisis, Instituto de Catalisis, CSIC, Campus Universidad Autonoma, 28049 Madrid, Spain.
Biotechnol Bioeng. 1998 Jun 5;58(5):486-93. doi: 10.1002/(sici)1097-0290(19980605)58:5<486::aid-bit4>3.0.co;2-9.
A number of bacterial lipases can be immobilized in a rapid and strong fashion on octyl-agarose gels (e.g., lipases from Candida antarctica, Pseudomonas fluorescens, Rhizomucor miehei, Humicola lanuginosa, Mucor javanicus, and Rhizopus niveus). Adsorption rates in absence of ammonium sulfate are higher than in its presence, opposite to the observation for typical hydrophobic adsorption of proteins. At 10 mM phosphate, adsorption of lipases is fairly selective allowing enzyme purification associated with their reversible immobilization. Interestingly, these immobilized lipase molecules show a dramatic hyperactivation. For example, lipases from R. niveus, M. miehei, and H. lanuginosa were 6-, 7-, and 20-fold more active than the corresponding soluble enzymes when catalyzing the hydrolysis of a fully soluble substrate (0.4 mM p-nitrophenyl propionate). Even higher hyperactivations and interesting changes in stereospecificity were also observed for the hydrolysis of larger soluble chiral esters (e.g. (R,S)-2-hydroxy-4-phenylbutanoic ethyl ester). These results suggest that lipases recognize these "well-defined" hydrophobic supports as solid interfaces and they become adsorbed through the external areas of the large hydrophobic active centers of their "open and hyperactivated structure". This selective interfacial adsorption of lipases becomes a very promising immobilization method with general application for most lipases. Through this method, we are able to combine, via a single and easily performed adsorption step, the purification, the strong immobilization, and a dramatic hyperactivation of lipases acting in the absence of additional interfaces, (e.g., in aqueous medium with soluble substrate). Copyright 1998 John Wiley & Sons, Inc.
多种细菌脂肪酶能够以快速且牢固的方式固定在辛基琼脂糖凝胶上(例如,来自南极假丝酵母、荧光假单胞菌、米黑根毛霉、疏棉状嗜热丝孢菌、爪哇毛霉和雪白根霉的脂肪酶)。在不存在硫酸铵的情况下,吸附速率高于存在硫酸铵时,这与典型的蛋白质疏水吸附情况相反。在10 mM磷酸盐存在下,脂肪酶的吸附具有相当高的选择性,这使得酶的纯化与其可逆固定化相关联。有趣的是,这些固定化的脂肪酶分子表现出显著的超活化。例如,当催化完全可溶的底物(0.4 mM对硝基苯丙酸酯)水解时,雪白根霉、米黑根毛霉和疏棉状嗜热丝孢菌的脂肪酶活性分别比相应的可溶性酶高6倍、7倍和20倍。对于较大的可溶性手性酯(例如(R,S)-2-羟基-4-苯基丁酸乙酯)的水解,还观察到了更高的超活化以及立体特异性方面有趣的变化。这些结果表明,脂肪酶将这些“定义明确”的疏水载体识别为固体界面,并且它们通过其“开放且超活化结构”的大疏水活性中心的外部区域被吸附。脂肪酶的这种选择性界面吸附成为一种非常有前景的固定化方法,可普遍应用于大多数脂肪酶。通过这种方法,我们能够通过一个简单易行的吸附步骤,将在不存在额外界面(例如,在含有可溶底物的水性介质中)起作用的脂肪酶的纯化、牢固固定化和显著超活化结合起来。版权所有1998约翰威立国际出版公司。