Suppr超能文献

都柏林念珠菌与具核梭杆菌的共聚作用。

Coaggregation of Candida dubliniensis with Fusobacterium nucleatum.

作者信息

Jabra-Rizk M A, Falkler W A, Merz W G, Kelley J I, Baqui A A, Meiller T F

机构信息

Department of Oral Medicine, Dental School, University of Maryland, Baltimore, 21201, USA.

出版信息

J Clin Microbiol. 1999 May;37(5):1464-8. doi: 10.1128/JCM.37.5.1464-1468.1999.

Abstract

The binding of microorganisms to each other and oral surfaces contributes to the progression of microbial infections in the oral cavity. Candida dubliniensis, a newly characterized species, has been identified in human immunodeficiency virus-seropositive patients and other immunocompromised individuals. C. dubliniensis phenotypically resembles Candida albicans in many respects yet can be identified and differentiated as a unique Candida species by phenotypic and genetic profiles. The purpose of this study was to determine oral coaggregation (CoAg) partners of C. dubliniensis and to compare these findings with CoAg of C. albicans under the same environmental conditions. Fifteen isolates of C. dubliniensis and 40 isolates of C. albicans were tested for their ability to coaggregate with strains of Fusobacterium nucleatum, Peptostreptococcus micros, Peptostreptococcus magnus, Peptostreptococcus anaerobius, Porphyromonas gingivalis, and Prevotella intermedia. When C. dubliniensis and C. albicans strains were grown at 37 degrees C on Sabouraud dextrose agar, only C. dubliniensis strains coaggregated with F. nucleatum ATCC 49256 and no C. albicans strains showed CoAg. However, when the C. dubliniensis and C. albicans strains were grown at 25 or 45 degrees C, both C. dubliniensis and C. albicans strains demonstrated CoAg with F. nucleatum. Heating the C. albicans strains (grown at 37 degrees C) at 85 degrees C for 30 min or treating them with dithiothreitol allowed the C. albicans strains grown at 37 degrees C to coaggregate with F. nucleatum. CoAg at all growth temperatures was inhibited by mannose and alpha-methyl mannoside but not by EDTA or arginine. The CoAg reaction between F. nucleatum and the Candida species involved a heat-labile component on F. nucleatum and a mannan-containing heat-stable receptor on the Candida species. The CoAg reactions between F. nucleatum and the Candida species may be important in the colonization of the yeast in the oral cavity, and the CoAg of C. dubliniensis by F. nucleatum when grown at 37 degrees C provides a rapid, specific, and inexpensive means to differentiate C. dubliniensis from C. albicans isolates in the clinical laboratory.

摘要

微生物彼此之间以及与口腔表面的结合有助于口腔微生物感染的进展。都柏林念珠菌是一种新鉴定的菌种,已在人类免疫缺陷病毒血清阳性患者及其他免疫功能低下个体中被发现。都柏林念珠菌在表型上在许多方面类似于白色念珠菌,但可通过表型和基因特征鉴定并区分其为独特的念珠菌种。本研究的目的是确定都柏林念珠菌的口腔共聚集(CoAg)伙伴,并在相同环境条件下将这些结果与白色念珠菌的CoAg进行比较。测试了15株都柏林念珠菌和40株白色念珠菌与具核梭杆菌、微小消化链球菌、大消化链球菌、厌氧消化链球菌、牙龈卟啉单胞菌和中间普雷沃菌菌株的共聚集能力。当都柏林念珠菌和白色念珠菌菌株在Sabouraud葡萄糖琼脂上于37℃培养时,只有都柏林念珠菌菌株与具核梭杆菌ATCC 49256共聚集,没有白色念珠菌菌株表现出CoAg。然而,当都柏林念珠菌和白色念珠菌菌株在25℃或45℃培养时,都柏林念珠菌和白色念珠菌菌株均与具核梭杆菌表现出CoAg。将白色念珠菌菌株(在37℃培养)在85℃加热30分钟或用二硫苏糖醇处理,可使在37℃培养的白色念珠菌菌株与具核梭杆菌共聚集。在所有生长温度下,CoAg均被甘露糖和α-甲基甘露糖苷抑制,但不被EDTA或精氨酸抑制。具核梭杆菌与念珠菌种之间的CoAg反应涉及具核梭杆菌上的热不稳定成分和念珠菌种上含甘露聚糖的热稳定受体。具核梭杆菌与念珠菌种之间的CoAg反应在酵母在口腔中的定植中可能很重要,并且在37℃培养时具核梭杆菌对都柏林念珠菌的CoAg为临床实验室中区分都柏林念珠菌与白色念珠菌分离株提供了一种快速、特异且廉价的方法。

相似文献

1
Coaggregation of Candida dubliniensis with Fusobacterium nucleatum.
J Clin Microbiol. 1999 May;37(5):1464-8. doi: 10.1128/JCM.37.5.1464-1468.1999.
2
New assay for measuring cell surface hydrophobicities of Candida dubliniensis and Candida albicans.
Clin Diagn Lab Immunol. 2001 May;8(3):585-7. doi: 10.1128/CDLI.8.3.585-587.2001.
3
Peptostreptococcus micros coaggregates with Fusobacterium nucleatum and non-encapsulated Porphyromonas gingivalis.
FEMS Microbiol Lett. 2000 Jan 1;182(1):57-62. doi: 10.1111/j.1574-6968.2000.tb08873.x.
4
Coaggregation of Candida albicans with oral Fusobacterium species.
Oral Microbiol Immunol. 1997 Jun;12(3):168-73. doi: 10.1111/j.1399-302x.1997.tb00374.x.
6
Synergy in biofilm formation between Fusobacterium nucleatum and Prevotella species.
Anaerobe. 2012 Feb;18(1):110-6. doi: 10.1016/j.anaerobe.2011.09.003. Epub 2011 Sep 16.
7
Comparison of the hydrophobic properties of Candida albicans and Candida dubliniensis.
Infect Immun. 2001 Feb;69(2):779-86. doi: 10.1128/IAI.69.2.779-786.2001.
8
Cellular Components Mediating Coadherence of Candida albicans and Fusobacterium nucleatum.
J Dent Res. 2015 Oct;94(10):1432-8. doi: 10.1177/0022034515593706. Epub 2015 Jul 7.

引用本文的文献

1
Infections: The Role of Saliva in Oral Health-A Narrative Review.
Microorganisms. 2025 Mar 23;13(4):717. doi: 10.3390/microorganisms13040717.
2
Supragingival microbiome variations and the influence of in adolescent orthodontic patients with gingivitis.
J Oral Microbiol. 2024 Jun 13;16(1):2366056. doi: 10.1080/20002297.2024.2366056. eCollection 2024.
3
Fungi-A Component of the Oral Microbiome Involved in Periodontal Diseases.
Adv Exp Med Biol. 2022;1373:113-138. doi: 10.1007/978-3-030-96881-6_6.
4
The Role of Virulence Factors in the Formation of Multispecies Biofilms With Bacterial Periodontal Pathogens.
Front Cell Infect Microbiol. 2022 Jan 5;11:765942. doi: 10.3389/fcimb.2021.765942. eCollection 2021.
5
Association between species and periodontal disease: A systematic review.
Curr Med Mycol. 2020 Jun;6(2):63-68. doi: 10.18502/CMM.6.2.3420.
6
Oral Candidiasis: A Disease of Opportunity.
J Fungi (Basel). 2020 Jan 16;6(1):15. doi: 10.3390/jof6010015.
7
Pathogenetic Impact of Bacterial-Fungal Interactions.
Microorganisms. 2019 Oct 16;7(10):459. doi: 10.3390/microorganisms7100459.
8
Candida Interactions with the Oral Bacterial Microbiota.
J Fungi (Basel). 2018 Nov 3;4(4):122. doi: 10.3390/jof4040122.
9
Real-time PCR analysis of fungal organisms and bacterial species at peri-implantitis sites.
Int J Implant Dent. 2015 Dec;1(1):9. doi: 10.1186/s40729-015-0010-6. Epub 2015 Apr 21.

本文引用的文献

1
Identification of Candida dubliniensis in a prospective study of patients in the United States.
J Clin Microbiol. 1999 Feb;37(2):321-6. doi: 10.1128/JCM.37.2.321-326.1999.
3
Prevalence of Candida dubliniensis isolates in a yeast stock collection.
J Clin Microbiol. 1998 Oct;36(10):2869-73. doi: 10.1128/JCM.36.10.2869-2873.1998.
5
Identification and expression of multidrug transporters responsible for fluconazole resistance in Candida dubliniensis.
Antimicrob Agents Chemother. 1998 Jul;42(7):1819-30. doi: 10.1128/AAC.42.7.1819.
6
Simple, inexpensive, reliable method for differentiation of Candida dubliniensis from Candida albicans.
J Clin Microbiol. 1998 Jul;36(7):2093-5. doi: 10.1128/JCM.36.7.2093-2095.1998.
7
Candida dubliniensis: phylogeny and putative virulence factors.
Microbiology (Reading). 1998 Apr;144 ( Pt 4):829-838. doi: 10.1099/00221287-144-4-829.
9
Coaggregation of Candida albicans with oral Fusobacterium species.
Oral Microbiol Immunol. 1997 Jun;12(3):168-73. doi: 10.1111/j.1399-302x.1997.tb00374.x.
10
Candida dubliniensis: characteristics and identification.
J Clin Microbiol. 1998 Feb;36(2):329-34. doi: 10.1128/JCM.36.2.329-334.1998.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验