O'Reilly M, Watson K A, Johnson L N
Laboratory of Molecular Biophysics, Oxford Centre for Molecular Sciences, Department of Biochemistry, University of Oxford, U.K.
Biochemistry. 1999 Apr 27;38(17):5337-45. doi: 10.1021/bi9828573.
Acarbose is a naturally occurring pseudo-tetrasaccharide. It has been used in conjunction with other drugs in the treatment of diabetes where it acts as an inhibitor of intestinal glucosidases. To probe the interactions of acarbose with other carbohydrate recognition enzymes, the crystal structure of E. coli maltodextrin phosphorylase (MalP) complexed with acarbose has been determined at 2.95 A resolution and refined to crystallographic R-values of R (Rfree) = 0.241 (0.293), respectively. Acarbose adopts a conformation that is close to its major minimum free energy conformation in the MalP-acarbose structure. The acarviosine moiety of acarbose occupies sub-sites +1 and +2 and the disaccharide sub-sites +3 and +4. (The site of phosphorolysis is between sub-sites -1 and +1.) This is the first identification of sub-sites +3 and +4 of MalP. Interactions of the glucosyl residues in sub-sites +2 and +4 are dominated by carbohydrate stacking interactions with tyrosine residues. These tyrosines (Tyr280 and Tyr613, respectively, in the rabbit muscle phosphorylase numbering scheme) are conserved in all species of phosphorylase. A glycerol molecule from the cryoprotectant occupies sub-site -1. The identification of four oligosaccharide sub-sites, that extend from the interior of the phosphorylase close to the catalytic site to the exterior surface of MalP, provides a structural rationalization of the substrate selectivity of MalP for a pentasaccharide substrate. Crystallographic binding studies of acarbose with amylases, glucoamylases, and glycosyltranferases and NMR studies of acarbose in solution have shown that acarbose can adopt two different conformations. This flexibility allows acarbose to target a number of different enzymes. The two alternative conformations of acarbose when bound to different carbohydrate enzymes are discussed.
阿卡波糖是一种天然存在的假四糖。它已与其他药物联合用于治疗糖尿病,在其中它作为肠道糖苷酶的抑制剂发挥作用。为了探究阿卡波糖与其他碳水化合物识别酶的相互作用,已确定大肠杆菌麦芽糖糊精磷酸化酶(MalP)与阿卡波糖复合物的晶体结构,分辨率为2.95 Å,并分别精修至晶体学R值R(Rfree) = 0.241(0.293)。在MalP - 阿卡波糖结构中,阿卡波糖采取的构象接近其主要的最小自由能构象。阿卡波糖的阿洛酮糖部分占据亚位点+1和+2以及二糖亚位点+3和+4。(磷酸解位点在亚位点-1和+1之间。)这是首次鉴定出MalP的亚位点+3和+4。亚位点+2和+4中葡萄糖基残基的相互作用主要由与酪氨酸残基的碳水化合物堆积相互作用主导。这些酪氨酸(在兔肌肉磷酸化酶编号方案中分别为Tyr280和Tyr613)在所有磷酸化酶物种中都是保守的。来自冷冻保护剂的一个甘油分子占据亚位点-1。从磷酸化酶内部靠近催化位点延伸至MalP外表面的四个寡糖亚位点的鉴定,为MalP对五糖底物的底物选择性提供了结构上的合理解释。阿卡波糖与淀粉酶、葡糖淀粉酶和糖基转移酶的晶体学结合研究以及溶液中阿卡波糖的核磁共振研究表明,阿卡波糖可以采取两种不同的构象。这种灵活性使阿卡波糖能够靶向多种不同的酶。讨论了阿卡波糖与不同碳水化合物酶结合时的两种替代构象。