Goedl Christiane, Griessler Richard, Schwarz Alexandra, Nidetzky Bernd
Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 12, A-8010 Graz, Austria.
Biochem J. 2006 Aug 1;397(3):491-500. doi: 10.1042/BJ20060029.
The cDNA encoding trehalose phosphorylase, a family GT-4 glycosyltransferase from the fungus Schizophyllum commune, was isolated and expressed in Escherichia coli to yield functional recombinant protein in its full length of 737 amino acids. Unlike the natural phosphorylase that was previously obtained as a truncated 61 kDa monomer containing one tightly bound Mg2+, the intact enzyme produced in E. coli is a dimer and not associated with metal ions [Eis, Watkins, Prohaska and Nidetzky (2001) Biochem. J. 356, 757-767]. MS analysis of the slow spontaneous conversion of the full-length enzyme into a 61 kDa fragment that is fully active revealed that critical elements of catalysis and specificity of trehalose phosphorylase reside entirely in the C-terminal protein part. Intact and truncated phosphorylases thus show identical inhibition constants for the transition state analogue orthovanadate and alpha,alpha-trehalose (K(i) approximately 1 microM). Structure-based sequence comparison with retaining glycosyltransferases of fold family GT-B reveals a putative active centre of trehalose phosphorylase, and results of site-directed mutagenesis confirm the predicted crucial role of Asp379, His403, Arg507 and Lys512 in catalysis and also delineate a function of these residues in determining the large preference of the wild-type enzyme for the phosphorolysis compared with hydrolysis of alpha,alpha-trehalose. The pseudo-disaccharide validoxylamine A was identified as a strong inhibitor of trehalose phosphorylase (K(i)=1.7+/-0.2 microM) that displays 350-fold tighter binding to the enzyme-phosphate complex than the non-phosphorolysable substrate analogue alpha,alpha-thio-trehalose. Structural and electronic features of the inhibitor that may be responsible for high-affinity binding and their complementarity to an anticipated glucosyl oxocarbenium ion-like transition state are discussed.
编码海藻糖磷酸化酶(一种来自裂褶菌的GT-4糖基转移酶家族成员)的cDNA被分离出来,并在大肠杆菌中表达,以产生全长737个氨基酸的功能性重组蛋白。与之前获得的截短的61 kDa单体天然磷酸化酶不同,该单体含有一个紧密结合的Mg2+,在大肠杆菌中产生的完整酶是二聚体,且不与金属离子结合[艾斯、沃特金斯、普罗哈斯卡和尼德茨基(2001年)《生物化学杂志》356卷,757 - 767页]。对全长酶缓慢自发转化为具有完全活性的61 kDa片段的质谱分析表明,海藻糖磷酸化酶催化和特异性的关键元件完全位于C端蛋白质部分。完整和截短的磷酸化酶对过渡态类似物原钒酸盐和α,α-海藻糖显示出相同的抑制常数(K(i)约为1 microM)。与GT-B折叠家族的保留糖基转移酶进行基于结构的序列比较,揭示了海藻糖磷酸化酶的一个假定活性中心,定点诱变结果证实了天冬氨酸379、组氨酸403、精氨酸507和赖氨酸512在催化中的预测关键作用,并且还描述了这些残基在确定野生型酶相对于α,α-海藻糖水解对磷酸解的高度偏好中的功能。伪二糖有效氧胺A被鉴定为海藻糖磷酸化酶的强抑制剂(K(i)=1.7±0.2 microM),与不可磷酸解的底物类似物α,α-硫代海藻糖相比,它与酶 - 磷酸盐复合物的结合紧密350倍。讨论了可能负责高亲和力结合的抑制剂的结构和电子特征及其与预期的葡糖基氧鎓离子样过渡态的互补性。