Watson K A, McCleverty C, Geremia S, Cottaz S, Driguez H, Johnson L N
Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
EMBO J. 1999 Sep 1;18(17):4619-32. doi: 10.1093/emboj/18.17.4619.
Phosphorylases are key enzymes of carbohydrate metabolism. Structural studies have provided explanations for almost all features of control and substrate recognition of phosphorylase but one question remains unanswered. How does phosphorylase recognize and cleave an oligosaccharide substrate? To answer this question we turned to the Escherichia coli maltodextrin phosphorylase (MalP), a non-regulatory phosphorylase that shares similar kinetic and catalytic properties with the mammalian glycogen phosphorylase. The crystal structures of three MalP-oligosaccharide complexes are reported: the binary complex of MalP with the natural substrate, maltopentaose (G5); the binary complex with the thio-oligosaccharide, 4-S-alpha-D-glucopyranosyl-4-thiomaltotetraose (GSG4), both at 2.9 A resolution; and the 2.1 A resolution ternary complex of MalP with thio-oligosaccharide and phosphate (GSG4-P). The results show a pentasaccharide bound across the catalytic site of MalP with sugars occupying sub-sites -1 to +4. Binding of GSG4 is identical to the natural pentasaccharide, indicating that the inactive thio compound is a close mimic of the natural substrate. The ternary MalP-GSG4-P complex shows the phosphate group poised to attack the glycosidic bond and promote phosphorolysis. In all three complexes the pentasaccharide exhibits an altered conformation across sub-sites -1 and +1, the site of catalysis, from the preferred conformation for alpha(1-4)-linked glucosyl polymers.
磷酸化酶是碳水化合物代谢的关键酶。结构研究几乎解释了磷酸化酶控制和底物识别的所有特征,但仍有一个问题未得到解答。磷酸化酶如何识别并切割寡糖底物?为了回答这个问题,我们研究了大肠杆菌麦芽糖糊精磷酸化酶(MalP),它是一种非调节性磷酸化酶,与哺乳动物糖原磷酸化酶具有相似的动力学和催化特性。本文报道了三种MalP-寡糖复合物的晶体结构:MalP与天然底物麦芽五糖(G5)的二元复合物;与硫代寡糖4-S-α-D-吡喃葡萄糖基-4-硫代麦芽四糖(GSG4)的二元复合物,分辨率均为2.9 Å;以及MalP与硫代寡糖和磷酸盐(GSG4-P)的分辨率为2.1 Å的三元复合物。结果显示,一种五糖横跨MalP的催化位点结合,糖占据亚位点-1至+4。GSG4的结合与天然五糖相同,表明这种无活性的硫代化合物是天然底物的紧密模拟物。三元MalP-GSG4-P复合物显示磷酸基团准备攻击糖苷键并促进磷酸解。在所有三种复合物中,五糖在催化位点亚位点-1和+1处的构象与α(1-4)连接的葡萄糖基聚合物的优选构象相比发生了改变。