Suppr超能文献

连接柔性聚合物链的弱键强度。

Strength of a weak bond connecting flexible polymer chains.

作者信息

Evans E, Ritchie K

机构信息

Physics and Pathology, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada.

出版信息

Biophys J. 1999 May;76(5):2439-47. doi: 10.1016/S0006-3495(99)77399-6.

Abstract

Bond dissociation under steadily rising force occurs most frequently at a time governed by the rate of loading (Evans and Ritchie, 1997 Biophys. J. 72:1541-1555). Multiplied by the loading rate, the breakage time specifies the force for most frequent failure (called bond strength) that obeys the same dependence on loading rate. The spectrum of bond strength versus log(loading rate) provides an image of the energy landscape traversed in the course of unbonding. However, when a weak bond is connected to very compliant elements like long polymers, the load applied to the bond does not rise steadily under constant pulling speed. Because of nonsteady loading, the most frequent breakage force can differ significantly from that of a bond loaded at constant rate through stiff linkages. Using generic models for wormlike and freely jointed chains, we have analyzed the kinetic process of failure for a bond loaded by pulling the polymer linkages at constant speed. We find that when linked by either type of polymer chain, a bond is likely to fail at lower force under steady separation than through stiff linkages. Quite unexpectedly, a discontinuous jump can occur in bond strength at slow separation speed in the case of long polymer linkages. We demonstrate that the predictions of strength versus log(loading rate) can rationalize conflicting results obtained recently for unfolding Ig domains along muscle titin with different force techniques.

摘要

在持续增加的力作用下,键的解离最常发生在由加载速率决定的某个时刻(埃文斯和里奇,1997年,《生物物理杂志》72:1541 - 1555)。断裂时间乘以加载速率,就确定了最常发生断裂的力(称为键强度),它对加载速率有相同的依赖性。键强度与对数(加载速率)的关系谱提供了在解离过程中所穿越的能量景观的图像。然而,当一个弱键连接到像长聚合物这样非常柔顺的元件上时,在恒定拉伸速度下施加到键上的负载不会稳定增加。由于加载不稳定,最常出现的断裂力可能与通过刚性连接以恒定速率加载的键的断裂力有显著差异。使用蠕虫状链和自由连接链的通用模型,我们分析了以恒定速度拉伸聚合物链来加载键时的失效动力学过程。我们发现,当由任何一种类型的聚合物链连接时,键在稳定分离时比通过刚性连接更可能在较低的力下失效。非常出乎意料的是,在长聚合物链的情况下,在缓慢分离速度下键强度可能会出现不连续的跳跃。我们证明,强度与对数(加载速率)的预测可以解释最近使用不同力技术沿肌肉肌联蛋白展开免疫球蛋白结构域所获得的相互矛盾的结果。

相似文献

1
Strength of a weak bond connecting flexible polymer chains.
Biophys J. 1999 May;76(5):2439-47. doi: 10.1016/S0006-3495(99)77399-6.
2
Model for stretching and unfolding the giant multidomain muscle protein using single-molecule force spectroscopy.
Phys Rev Lett. 2008 Dec 12;101(24):248301. doi: 10.1103/PhysRevLett.101.248301. Epub 2008 Dec 8.
5
A kinetic molecular model of the reversible unfolding and refolding of titin under force extension.
Biophys J. 1999 Sep;77(3):1306-15. doi: 10.1016/S0006-3495(99)76980-8.
6
Dynamic strength of molecular adhesion bonds.
Biophys J. 1997 Apr;72(4):1541-55. doi: 10.1016/S0006-3495(97)78802-7.
7
Steered molecular dynamics studies of titin I1 domain unfolding.
Biophys J. 2002 Dec;83(6):3435-45. doi: 10.1016/S0006-3495(02)75343-5.
8
Intrinsic rates and activation free energies from single-molecule pulling experiments.
Phys Rev Lett. 2006 Mar 17;96(10):108101. doi: 10.1103/PhysRevLett.96.108101. Epub 2006 Mar 15.
9
Mechanism of titin unfolding by force: insight from quasi-equilibrium molecular dynamics calculations.
Biophys J. 2006 Jul 15;91(2):467-72. doi: 10.1529/biophysj.106.082594. Epub 2006 Apr 21.
10
Probing the relation between force--lifetime--and chemistry in single molecular bonds.
Annu Rev Biophys Biomol Struct. 2001;30:105-28. doi: 10.1146/annurev.biophys.30.1.105.

引用本文的文献

1
Interactions between TTYH2 and APOE facilitate endosomal lipid transfer.
Nature. 2025 Jun 25. doi: 10.1038/s41586-025-09200-x.
2
Protocol for sample preparation and single-molecule optical tweezers study of nanodisc-embedded ABC transporter OpuA.
STAR Protoc. 2025 Jun 20;6(2):103869. doi: 10.1016/j.xpro.2025.103869. Epub 2025 Jun 2.
3
Single-Molecule Insight Into α-Synuclein Fibril Structure and Mechanics Modulated by Chemical Compounds.
Adv Sci (Weinh). 2025 Apr;12(14):e2416721. doi: 10.1002/advs.202416721. Epub 2025 Feb 14.
4
DNA nanodevice for analysis of force-activated protein extension and interactions.
bioRxiv. 2024 Dec 11:2024.10.25.620262. doi: 10.1101/2024.10.25.620262.
5
Rapidly damping hydrogels engineered through molecular friction.
Nat Commun. 2024 Jun 8;15(1):4895. doi: 10.1038/s41467-024-49239-4.
6
Strong, tough, rapid-recovery, and fatigue-resistant hydrogels made of picot peptide fibres.
Nat Commun. 2023 May 4;14(1):2583. doi: 10.1038/s41467-023-38280-4.
8
Low cost and massively parallel force spectroscopy with fluid loading on a chip.
Nat Commun. 2022 Nov 10;13(1):6800. doi: 10.1038/s41467-022-34212-w.
9
The molecular mechanisms underlying mussel adhesion.
Nanoscale Adv. 2019 Oct 10;1(11):4246-4257. doi: 10.1039/c9na00582j. eCollection 2019 Nov 5.
10
Optimal Sacrificial Domains in Mechanical Polyproteins: Adhesins Are Tuned for Work Dissipation.
JACS Au. 2022 May 18;2(6):1417-1427. doi: 10.1021/jacsau.2c00121. eCollection 2022 Jun 27.

本文引用的文献

1
Straightening of Thermal Fluctuations in Semiflexible Polymers by Applied Tension.
Phys Rev Lett. 1996 Dec 30;77(27):5389-5392. doi: 10.1103/PhysRevLett.77.5389.
3
The molecular elasticity of the extracellular matrix protein tenascin.
Nature. 1998 May 14;393(6681):181-5. doi: 10.1038/30270.
4
Stretching single protein molecules: titin is a weird spring.
Science. 1997 May 16;276(5315):1090-2. doi: 10.1126/science.276.5315.1090.
5
Elasticity and unfolding of single molecules of the giant muscle protein titin.
Nature. 1997 May 15;387(6630):308-12. doi: 10.1038/387308a0.
6
Folding-unfolding transitions in single titin molecules characterized with laser tweezers.
Science. 1997 May 16;276(5315):1112-6. doi: 10.1126/science.276.5315.1112.
7
Reversible unfolding of individual titin immunoglobulin domains by AFM.
Science. 1997 May 16;276(5315):1109-12. doi: 10.1126/science.276.5315.1109.
8
Dynamic strength of molecular adhesion bonds.
Biophys J. 1997 Apr;72(4):1541-55. doi: 10.1016/S0006-3495(97)78802-7.
9
Sensitive force technique to probe molecular adhesion and structural linkages at biological interfaces.
Biophys J. 1995 Jun;68(6):2580-7. doi: 10.1016/S0006-3495(95)80441-8.
10
Models for the specific adhesion of cells to cells.
Science. 1978 May 12;200(4342):618-27. doi: 10.1126/science.347575.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验