Suppr超能文献

力作用下肌联蛋白展开的机制:来自准平衡分子动力学计算的见解

Mechanism of titin unfolding by force: insight from quasi-equilibrium molecular dynamics calculations.

作者信息

Pabón Germán, Amzel L Mario

机构信息

Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.

出版信息

Biophys J. 2006 Jul 15;91(2):467-72. doi: 10.1529/biophysj.106.082594. Epub 2006 Apr 21.

Abstract

We have studied the unfolding by force of one of the immunoglobulin domains of the muscle protein titin using molecular dynamics simulations at 300 K. Previous studies, done at constant pulling rates, showed that under the effect of the force two strands connected to each other by six backbone H-bonds are pulled apart. No details about the mechanism of H-bond breaking were provided. Our simulation protocol "pull and wait" was designed to correspond to very slow pulling, more similar to the rates used in experiments than are the protocols used in previous computational studies. Under these conditions interstrand backbone H-bonds are not "ripped apart" by the application of the force. Instead, small elongations produced by the force weaken specific backbone H-bonds with respect to water-backbone H-bonds. These weakened bonds allow a single water molecule to make H-bonds to the CO and the NH of the same backbone H-bond while they are still bound to each other. The backbone H-bond then breaks (distance > 3.6 A), but its donor and acceptor atoms remain bound to the same water molecule. Further separation of the chains takes place when a second water molecule makes an H-bond with either the protein backbone donor or acceptor atom. Thus, the force does not directly break the main chain H-bonds: it destabilizes them in such a way that they are replaced by H-bonds to water. With this mechanism, the force necessary to break all the H-bonds required to separate the two strands will be strongly dependent on the pulling speed. Further simulations carried out at low forces but long waiting times (> or = 500 ps, < or = 10 ns) show that, given enough time, even a very small pulling force (< 400 pN) is sufficient to destabilize the interstrand H-bonds and allow them to be replaced by H-bonds to two water molecules. As expected, increasing the temperature to 350 K allows the interstrand H-bonds to break at lower forces than those required at 300 K.

摘要

我们利用300K下的分子动力学模拟研究了肌肉蛋白肌联蛋白的一个免疫球蛋白结构域在力作用下的展开过程。先前在恒定拉伸速率下进行的研究表明,在力的作用下,通过六个主链氢键相互连接的两条链会被拉开。但未提供有关氢键断裂机制的详细信息。我们设计的“拉伸并等待”模拟方案旨在对应非常缓慢的拉伸,与先前计算研究中使用的方案相比,更类似于实验中使用的速率。在这些条件下,链间主链氢键不会因力的作用而“被撕开”。相反,力产生的小伸长会使特定的主链氢键相对于水 - 主链氢键变弱。这些变弱的键允许单个水分子在它们仍然相互结合时与同一主链氢键的羰基(CO)和亚氨基(NH)形成氢键。然后主链氢键断裂(距离> 3.6埃),但其供体和受体原子仍与同一个水分子结合。当第二个水分子与蛋白质主链供体或受体原子形成氢键时,链会进一步分离。因此,力不会直接断裂主链氢键:它以使它们被与水的氢键取代的方式使其不稳定。通过这种机制,分离两条链所需的所有氢键断裂所需的力将强烈依赖于拉伸速度。在低力但长等待时间(≥500皮秒,≤10纳秒)下进行的进一步模拟表明,给予足够的时间,即使非常小的拉伸力(<400皮牛顿)也足以使链间氢键不稳定,并使其被与两个水分子的氢键取代。正如预期的那样,将温度升高到350K会使链间氢键在比300K所需的力更低的力下断裂。

相似文献

3
Computer modeling of force-induced titin domain unfolding.力诱导肌联蛋白结构域展开的计算机模拟
Adv Exp Med Biol. 2000;481:143-60; discussion 161-2. doi: 10.1007/978-1-4615-4267-4_9.

引用本文的文献

2
Cooperative dynamics of proteins unraveled by network models.通过网络模型揭示蛋白质的协同动力学。
Wiley Interdiscip Rev Comput Mol Sci. 2011 May-Jun;1(3):426-439. doi: 10.1002/wcms.44. Epub 2011 Apr 11.
5
Water's role in the force-induced unfolding of ubiquitin.水在泛素力致变性折叠中的作用。
Proc Natl Acad Sci U S A. 2010 Nov 9;107(45):19284-9. doi: 10.1073/pnas.1013159107. Epub 2010 Oct 25.
6
Molecular basis for the structural stability of an enclosed β-barrel loop.封闭 β-桶环结构稳定性的分子基础。
J Mol Biol. 2010 Sep 17;402(2):475-89. doi: 10.1016/j.jmb.2010.07.035. Epub 2010 Jul 23.

本文引用的文献

3
The mechanical stability of ubiquitin is linkage dependent.泛素的机械稳定性取决于连接方式。
Nat Struct Biol. 2003 Sep;10(9):738-43. doi: 10.1038/nsb965. Epub 2003 Aug 17.
9
Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences.熵产生涨落定理与自由能差的非平衡功关系。
Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1999 Sep;60(3):2721-6. doi: 10.1103/physreve.60.2721.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验