Suppr超能文献

青蛙嗅觉纤毛中环磷酸腺苷的扩散系数。

Cyclic AMP diffusion coefficient in frog olfactory cilia.

作者信息

Chen C, Nakamura T, Koutalos Y

机构信息

Department of Physiology and Biophysics, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA.

出版信息

Biophys J. 1999 May;76(5):2861-7. doi: 10.1016/S0006-3495(99)77440-0.

Abstract

Cyclic AMP (cAMP) is one of the intracellular messengers that mediate odorant signal transduction in vertebrate olfactory cilia. Therefore, the diffusion coefficient of cAMP in olfactory cilia is an important factor in the transduction of the odorous signal. We have employed the excised cilium preparation from the grass frog (Rana pipiens) to measure the cAMP diffusion coefficient. In this preparation an olfactory cilium is drawn into a patch pipette and a gigaseal is formed at the base of the cilium. Subsequently the cilium is excised, allowing bath cAMP to diffuse into the cilium and activate the cyclic nucleotide-gated channels on the plasma membrane. In order to estimate the cAMP diffusion coefficient, we analyzed the kinetics of the currents elicited by step changes in the bath cAMP concentration in the absence of cAMP hydrolysis. Under such conditions, the kinetics of the cAMP-activated currents has a simple dependence on the diffusion coefficient. From the analysis we have obtained a cAMP diffusion coefficient of 2.7 +/- 0.2. 10(-6) cm2 s-1 for frog olfactory cilia. This value is similar to the expected value in aqueous solution, suggesting that there are no significant diffusional barriers inside olfactory cilia. At cAMP concentrations higher than 5 microM, diffusion slowed considerably, suggesting the presence of buffering by immobile cAMP binding sites. A plausible physiological function of such buffering sites would be to prolong the response of the cell to strong stimuli.

摘要

环磷酸腺苷(cAMP)是介导脊椎动物嗅觉纤毛中气味信号转导的细胞内信使之一。因此,cAMP在嗅觉纤毛中的扩散系数是气味信号转导中的一个重要因素。我们采用从牛蛙(豹蛙)分离出的纤毛制剂来测量cAMP的扩散系数。在该制剂中,一根嗅觉纤毛被吸入膜片吸管,并在纤毛基部形成千兆封接。随后将纤毛分离出来,使浴槽中的cAMP扩散到纤毛中并激活质膜上的环核苷酸门控通道。为了估算cAMP的扩散系数,我们在不存在cAMP水解的情况下,分析了浴槽中cAMP浓度阶跃变化所引发电流的动力学。在这种条件下,cAMP激活电流的动力学简单地依赖于扩散系数。通过分析,我们得到牛蛙嗅觉纤毛的cAMP扩散系数为2.7±0.2×10⁻⁶ cm² s⁻¹。该值与水溶液中的预期值相似,表明嗅觉纤毛内部不存在显著的扩散屏障。在cAMP浓度高于5 μM时,扩散显著减慢,表明存在由固定的cAMP结合位点进行的缓冲作用。这种缓冲位点一个合理的生理功能可能是延长细胞对强刺激的反应。

相似文献

1
Cyclic AMP diffusion coefficient in frog olfactory cilia.
Biophys J. 1999 May;76(5):2861-7. doi: 10.1016/S0006-3495(99)77440-0.
2
Gated conductances in native and reconstituted membranes from frog olfactory cilia.
Biophys J. 1996 Feb;70(2):813-7. doi: 10.1016/S0006-3495(96)79625-X.
4
Mechanism of olfactory masking in the sensory cilia.
J Gen Physiol. 2009 Jun;133(6):583-601. doi: 10.1085/jgp.200810085. Epub 2009 May 11.
6
Cyclic GMP diffusion coefficient in rod photoreceptor outer segments.
Biophys J. 1995 Jan;68(1):373-82. doi: 10.1016/S0006-3495(95)80198-0.
7
Clustering of cyclic-nucleotide-gated channels in olfactory cilia.
Biophys J. 2006 Jul 1;91(1):179-88. doi: 10.1529/biophysj.105.079046. Epub 2006 Apr 7.
8
Single Ca(2+)-activated Cl(-) channel currents recorded from toad olfactory cilia.
BMC Neurosci. 2016 Apr 25;17(1):17. doi: 10.1186/s12868-016-0252-0.
9

引用本文的文献

1
Nanodomain cAMP signaling in cardiac pathophysiology: potential for developing targeted therapeutic interventions.
Physiol Rev. 2025 Apr 1;105(2):541-591. doi: 10.1152/physrev.00013.2024. Epub 2024 Aug 8.
2
Longitudinal diffusion barriers imposed by myofilaments and mitochondria in murine cardiac myocytes.
J Gen Physiol. 2023 Oct 2;155(10). doi: 10.1085/jgp.202213329. Epub 2023 Aug 9.
3
Pore-like diffusion barriers in murine cardiac myocytes.
bioRxiv. 2023 Jan 3:2023.01.02.522313. doi: 10.1101/2023.01.02.522313.
4
Ion Channel-Based Reporters for cAMP Detection.
Methods Mol Biol. 2022;2483:265-279. doi: 10.1007/978-1-0716-2245-2_17.
5
Mechanisms of cAMP compartmentation in cardiac myocytes: experimental and computational approaches to understanding.
J Physiol. 2021 Oct;599(20):4527-4544. doi: 10.1113/JP280801. Epub 2021 Sep 27.
6
Liquid-liquid phase separation: a principal organizer of the cell's biochemical activity architecture.
Trends Pharmacol Sci. 2021 Oct;42(10):845-856. doi: 10.1016/j.tips.2021.07.003. Epub 2021 Aug 6.
7
5D imaging approaches reveal the formation of distinct intracellular cAMP spatial gradients.
Proc SPIE Int Soc Opt Eng. 2017 Jan-Feb;10070. doi: 10.1117/12.2253164. Epub 2017 Feb 17.
8
Three dimensional measurement of cAMP gradients using hyperspectral confocal microscopy.
Proc SPIE Int Soc Opt Eng. 2016 Feb;9713. doi: 10.1117/12.2213273. Epub 2016 Mar 9.
9
The cyclic AMP signaling pathway in the rodent main olfactory system.
Cell Tissue Res. 2021 Jan;383(1):429-443. doi: 10.1007/s00441-020-03391-7. Epub 2021 Jan 15.
10
Subcellular Organization of the cAMP Signaling Pathway.
Pharmacol Rev. 2021 Jan;73(1):278-309. doi: 10.1124/pharmrev.120.000086.

本文引用的文献

1
THE DIFFUSION OF ADENOSINE TRIPHOSPHATE THROUGH AQUEOUS SOLUTIONS.
Arch Biochem Biophys. 1964 Jul;107:30-6. doi: 10.1016/0003-9861(64)90265-6.
2
Transduction mechanisms in vertebrate olfactory receptor cells.
Physiol Rev. 1998 Apr;78(2):429-66. doi: 10.1152/physrev.1998.78.2.429.
3
Mechanism of odorant adaptation in the olfactory receptor cell.
Nature. 1997 Feb 20;385(6618):725-9. doi: 10.1038/385725a0.
4
Cyclic nucleotide-gated ion channels: an extended family with diverse functions.
Annu Rev Physiol. 1996;58:395-426. doi: 10.1146/annurev.ph.58.030196.002143.
5
Gated conductances in native and reconstituted membranes from frog olfactory cilia.
Biophys J. 1996 Feb;70(2):813-7. doi: 10.1016/S0006-3495(96)79625-X.
7
Determinants of the translational mobility of a small solute in cell cytoplasm.
J Cell Biol. 1993 Jan;120(1):175-84. doi: 10.1083/jcb.120.1.175.
8
Origin of the chloride current in olfactory transduction.
Neuron. 1993 Jul;11(1):123-32. doi: 10.1016/0896-6273(93)90276-w.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验