Suppr超能文献

鼠伤寒沙门氏菌的突变菌株(nit),其在氮代谢方面存在多效性缺陷。

Mutant strains (nit) of Salmonella typhimurium with a pleiotropic defect in nitrogen metabolism.

作者信息

Broach J, Neumann C, Kustu S

出版信息

J Bacteriol. 1976 Oct;128(1):86-98. doi: 10.1128/jb.128.1.86-98.1976.

Abstract

We have isolated mutant strains (nit) of Salmonella typhimurium that are defective in nitrogen metabolism. They have a reduced ability to use a variety of compounds including glutamate, proline, arginine, N-acetyl-glucosamine, alanine, and adenosine as sole nitrogen source. In addition, although they grow normally on high concentrations of ammonium chloride (greater than 1 mM) as nitrogen source, they grow substantially more slowly than wild type at low concentrations (less than 1 mM). We postulated that the inability of these strains to utilize low concentrations of ammonium chloride accounts for their poor growth on other nitrogen sources. The specific biochemical lesion in strains with a nit mutation is not known; however, mutant strains have no detectable alteration in the activities of glutamine synthetase, glutamate synthetase, or glutamate dehydrogenase, the enzymes known to be involved in assimilation of ammonia. A nit mutation is suppressed by second-site mutations in the structural gene for glutamine synthetase (glnA) that decrease glutamine synthetase activity.

摘要

我们已经分离出鼠伤寒沙门氏菌的突变菌株(nit),这些菌株在氮代谢方面存在缺陷。它们利用包括谷氨酸、脯氨酸、精氨酸、N-乙酰葡糖胺、丙氨酸和腺苷在内的多种化合物作为唯一氮源的能力降低。此外,尽管它们在高浓度氯化铵(大于1 mM)作为氮源时能正常生长,但在低浓度(小于1 mM)时生长速度比野生型慢得多。我们推测,这些菌株无法利用低浓度氯化铵是它们在其他氮源上生长不良的原因。具有nit突变的菌株中具体的生化损伤尚不清楚;然而,突变菌株在谷氨酰胺合成酶、谷氨酸合成酶或谷氨酸脱氢酶(已知参与氨同化的酶)的活性方面没有可检测到的变化。谷氨酰胺合成酶(glnA)结构基因中的第二位点突变可抑制nit突变,该突变会降低谷氨酰胺合成酶的活性。

相似文献

1
Mutant strains (nit) of Salmonella typhimurium with a pleiotropic defect in nitrogen metabolism.
J Bacteriol. 1976 Oct;128(1):86-98. doi: 10.1128/jb.128.1.86-98.1976.
2
3
Salmonella typhimurium mutants with altered glutamate dehydrogenase and glutamate synthase activities.
J Bacteriol. 1980 Jan;141(1):190-8. doi: 10.1128/jb.141.1.190-198.1980.
5
A pleiotropic mutant of Rhodopseudomonas capsulata defective in nitrogen metabolism.
Arch Microbiol. 1977 Dec 15;115(3):259-63. doi: 10.1007/BF00446450.
6
The regulation of glutamine transport and glutamine synthetase in Salmonella typhimurium.
J Gen Microbiol. 1976 Aug;96(2):324-34. doi: 10.1099/00221287-95-2-324.
7
Regulation of the ammonia assimilatory enzymes in Salmonella typhimurium.
J Bacteriol. 1975 Oct;124(1):182-9. doi: 10.1128/jb.124.1.182-189.1975.
8
Mutations affecting glutamine synthetase activity in Salmonella typhimurium.
J Bacteriol. 1975 Jun;122(3):1006-16. doi: 10.1128/jb.122.3.1006-1016.1975.
10
Nitrogen assimilation in Rhodopseudomonas acidophila.
Arch Microbiol. 1978 Oct 4;119(1):1-5. doi: 10.1007/BF00407919.

引用本文的文献

2
Nitrogen assimilation in Escherichia coli: putting molecular data into a systems perspective.
Microbiol Mol Biol Rev. 2013 Dec;77(4):628-95. doi: 10.1128/MMBR.00025-13.
3
Glutamine versus ammonia utilization in the NAD synthetase family.
PLoS One. 2012;7(6):e39115. doi: 10.1371/journal.pone.0039115. Epub 2012 Jun 15.
4
The pivotal twin histidines and aromatic triad of the Escherichia coli ammonium channel AmtB can be replaced.
Proc Natl Acad Sci U S A. 2011 Aug 9;108(32):13270-4. doi: 10.1073/pnas.1108451108. Epub 2011 Jul 20.
5
Protection of the glutamate pool concentration in enteric bacteria.
Proc Natl Acad Sci U S A. 2007 May 29;104(22):9475-80. doi: 10.1073/pnas.0703360104. Epub 2007 May 21.
6
Inhibitory complex of the transmembrane ammonia channel, AmtB, and the cytosolic regulatory protein, GlnK, at 1.96 A.
Proc Natl Acad Sci U S A. 2007 Jan 2;104(1):42-7. doi: 10.1073/pnas.0609796104. Epub 2006 Dec 26.
7
Detailed mechanism for AmtB conducting NH4+/NH3: molecular dynamics simulations.
Biophys J. 2007 Feb 1;92(3):877-85. doi: 10.1529/biophysj.106.090191. Epub 2006 Nov 10.
9
P(II) signal transduction proteins, pivotal players in microbial nitrogen control.
Microbiol Mol Biol Rev. 2001 Mar;65(1):80-105. doi: 10.1128/MMBR.65.1.80-105.2001.
10
Salmonella typhimurium nit is nadE: defective nitrogen utilization and ammonia-dependent NAD synthetase.
J Bacteriol. 1998 Sep;180(17):4739-41. doi: 10.1128/JB.180.17.4739-4741.1998.

本文引用的文献

1
Protein measurement with the Folin phenol reagent.
J Biol Chem. 1951 Nov;193(1):265-75.
2
UPTAKE OF AMINO ACIDS BY SALMONELLA TYPHIMURIUM.
Arch Biochem Biophys. 1964 Jan;104:1-18. doi: 10.1016/s0003-9861(64)80028-x.
3
Utilization of L-glutamic and 2-oxoglutaric acid as sole sources of carbon by Escherichia coli.
J Gen Microbiol. 1961 Oct;26:175-83. doi: 10.1099/00221287-26-2-175.
4
Conversion of ammonia to amino groups in Escherichia coli.
J Bacteriol. 1960 Sep;80(3):285-8. doi: 10.1128/jb.80.3.285-288.1960.
6
A phage P22 gene controlling integration of prophage.
Virology. 1967 Feb;31(2):207-16. doi: 10.1016/0042-6822(67)90164-x.
8
Regulation of glutamine synthetase. I. Purification and properties of glutamine synthetase from Escherichia coli.
Arch Biochem Biophys. 1966 Sep 26;116(1):177-92. doi: 10.1016/0003-9861(66)90026-9.
9
Glutamate transport in wild-type and mutant strains of Escherichia coli.
J Bacteriol. 1965 Nov;90(5):1288-95. doi: 10.1128/jb.90.5.1288-1295.1965.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验