Suppr超能文献

大肠杆菌野生型和突变株中的谷氨酸转运

Glutamate transport in wild-type and mutant strains of Escherichia coli.

作者信息

Halpern Y S, Lupo M

出版信息

J Bacteriol. 1965 Nov;90(5):1288-95. doi: 10.1128/jb.90.5.1288-1295.1965.

Abstract

Halpern, Yeheskel S. (Hebrew University-Hadassah Medical School, Jerusalem, Israel), and Meir Lupo. Glutamate transport in wild-type and mutant strains of Escherichia coli. J. Bacteriol. 90:1288-1295. 1965.-Mutants of Escherichia coli able to grow on glutamate as their source of carbon showed glutamate dehydrogenase and glutamate-oxaloacetate transaminase activities similar to those possessed by the parent strain. The mutants took up glutamate at a much faster rate and showed a several-fold greater capacity for concentrating the amino acid than did the corresponding parent strains. Curvilinear double reciprocal plots of velocity of uptake versus glutamate concentration were obtained with the E. coli H strains. A break in the curve of glutamate uptake was observed with the E. coli K-12 strains when incubated in a glucose medium. It is suggested that these findings may be due to allosteric activation of glutamate permease by its substrate.

摘要

哈尔彭,叶海斯凯尔·S.(以色列耶路撒冷希伯来大学-哈达萨医学院),以及迈尔·卢波。大肠杆菌野生型和突变株中的谷氨酸转运。《细菌学杂志》90:1288 - 1295。1965年。——能够以谷氨酸作为碳源生长的大肠杆菌突变株,其谷氨酸脱氢酶和谷氨酸-草酰乙酸转氨酶活性与亲本菌株相似。这些突变株摄取谷氨酸的速度要快得多,并且与相应的亲本菌株相比,其浓缩氨基酸的能力高出数倍。用大肠杆菌H株得到了摄取速度与谷氨酸浓度的曲线型双倒数图。当在葡萄糖培养基中培养时,大肠杆菌K - 12株的谷氨酸摄取曲线出现了一个拐点。有人认为,这些发现可能是由于谷氨酸通透酶被其底物别构激活所致。

相似文献

1
Glutamate transport in wild-type and mutant strains of Escherichia coli.
J Bacteriol. 1965 Nov;90(5):1288-95. doi: 10.1128/jb.90.5.1288-1295.1965.
2
Utilization of -aminobutyric acid as the sole carbon and nitrogen source by Escherichia coli K-12 mutants.
J Bacteriol. 1972 Feb;109(2):835-43. doi: 10.1128/jb.109.2.835-843.1972.
3
Glutamate-binding protein and its relation to glutamate transport in Escherichia coli K-12.
Biochem Biophys Res Commun. 1971 Nov 5;45(3):681-8. doi: 10.1016/0006-291x(71)90470-0.
6
Sodium-stimulated transport of glutamate in Escherichia coli.
J Bacteriol. 1969 Oct;100(1):329-36. doi: 10.1128/jb.100.1.329-336.1969.
7
Properties of the glutamate transport system in Escherichia coli.
J Bacteriol. 1967 Mar;93(3):1009-16. doi: 10.1128/jb.93.3.1009-1016.1967.
8
Metabolism of glutamic acid in a mutant of Escherichia coli.
J Bacteriol. 1965 Nov;90(5):1304-7. doi: 10.1128/jb.90.5.1304-1307.1965.

引用本文的文献

1
Essentiality of c-di-AMP in Bacillus subtilis: Bypassing mutations converge in potassium and glutamate homeostasis.
PLoS Genet. 2021 Jan 22;17(1):e1009092. doi: 10.1371/journal.pgen.1009092. eCollection 2021 Jan.
2
Single amino acid utilization for bacterial categorization.
Sci Rep. 2020 Jul 29;10(1):12686. doi: 10.1038/s41598-020-69686-5.
3
Addition of Escherichia coli K-12 growth observation and gene essentiality data to the EcoCyc database.
J Bacteriol. 2014 Mar;196(5):982-8. doi: 10.1128/JB.01209-13. Epub 2013 Dec 20.
5
Regulation of amino acid transport in Thiobacillus thioparus.
J Bacteriol. 1981 Dec;148(3):966-72. doi: 10.1128/jb.148.3.966-972.1981.
6
Multiplicity of aspartate transport in thin wastewater biofilms.
Appl Environ Microbiol. 1984 Dec;48(6):1151-8. doi: 10.1128/aem.48.6.1151-1158.1984.
7
Energy requirement for L-glutamate uptake and utilization by Hansenula subpelliculosa cells.
J Bacteriol. 1966 Dec;92(6):1638-44. doi: 10.1128/jb.92.6.1638-1644.1966.
8
Mutants of Salmonella typhimurium able to utilize D-histidine as a source of L-histidine.
J Bacteriol. 1971 Jan;105(1):28-37. doi: 10.1128/jb.105.1.28-37.1971.
9
Amino acid transport in Mycobacterium smegmatis.
J Bacteriol. 1970 Apr;102(1):6-13. doi: 10.1128/jb.102.1.6-13.1970.
10
Genetic analysis of glutamate transport and glutamate decarboxylase in Escherichia coli.
J Bacteriol. 1967 Apr;93(4):1409-15. doi: 10.1128/jb.93.4.1409-1415.1967.

本文引用的文献

1
Mutants of Escherichia coli requiring methionine or vitamin B12.
J Bacteriol. 1950 Jul;60(1):17-28. doi: 10.1128/jb.60.1.17-28.1950.
2
Inhibition of utilization of glutamic acid by Lactobacillus arabinosus.
Proc Soc Exp Biol Med. 1952 Mar;79(3):476-81. doi: 10.3181/00379727-79-19417.
3
Protein measurement with the Folin phenol reagent.
J Biol Chem. 1951 Nov;193(1):265-75.
4
Effect of glutamic acid on the formation of two glutamic acid dehydrogenases of Neurospora.
Biochem Biophys Res Commun. 1962 Jan 24;6:404-9. doi: 10.1016/0006-291x(62)90364-9.
5
STABILITY OF ALPHA-HYDROGEN OF AMINO ACIDS DURING ACTIVE TRANSPORT.
Biochemistry. 1965 Mar;4:561-5. doi: 10.1021/bi00879a029.
8
AMMONIA METABOLISM IN A MUTANT OF ESCHERICHIA COLI LACKING GLUTAMATE DEHYDROGENASE.
Biochim Biophys Acta. 1964 Jul 15;90:218-20. doi: 10.1016/0304-4165(64)90149-7.
9
UPTAKE OF AMINO ACIDS BY SALMONELLA TYPHIMURIUM.
Arch Biochem Biophys. 1964 Jan;104:1-18. doi: 10.1016/s0003-9861(64)80028-x.
10
Allosteric proteins and cellular control systems.
J Mol Biol. 1963 Apr;6:306-29. doi: 10.1016/s0022-2836(63)80091-1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验