Behar T N, Scott C A, Greene C L, Wen X, Smith S V, Maric D, Liu Q Y, Colton C A, Barker J L
Laboratory of Neurophysiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA.
J Neurosci. 1999 Jun 1;19(11):4449-61. doi: 10.1523/JNEUROSCI.19-11-04449.1999.
During cortical development, embryonic neurons migrate from germinal zones near the ventricle into the cortical plate, where they organize into layers. Mechanisms that direct neuronal migration may include molecules that act as chemoattractants. In rats, GABA, which localizes near the target destination for migrating cortical neurons, stimulates embryonic neuronal migration in vitro. In mice, glutamate is highly localized near the target destinations for migrating cortical neurons. Glutamate-induced migration of murine embryonic cortical cells was evaluated in cell dissociates and cortical slice cultures. In dissociates, the chemotropic effects of glutamate were 10-fold greater than the effects of GABA, demonstrating that for murine cortical cells, glutamate is a more potent chemoattractant than GABA. Thus, cortical chemoattractants appear to differ between species. Micromolar glutamate stimulated neuronal chemotaxis that was mimicked by microM NMDA but not by other ionotropic glutamate receptor agonists (AMPA, kainate, quisqualate). Responding cells were primarily derived from immature cortical regions [ventricular zone (vz)/subventricular zone (svz)]. Bromodeoxyuridine (BrdU) pulse labeling of cortical slices cultured in NMDA antagonists (microM MK801 or APV) revealed that antagonist exposure blocked the migration of BrdU-positive cells from the vz/svz into the cortical plate. PCR confirmed the presence of NMDA receptor expression in vz/svz cells, whereas electrophysiology and Ca2+ imaging demonstrated that vz/svz cells exhibited physiological responses to NMDA. These studies indicate that, in mice, glutamate may serve as a chemoattractant for neurons in the developing cortex, signaling cells to migrate into the cortical plate via NMDA receptor activation.
在皮质发育过程中,胚胎神经元从脑室附近的生发区迁移到皮质板,在那里它们组织成层。引导神经元迁移的机制可能包括充当化学引诱剂的分子。在大鼠中,γ-氨基丁酸(GABA)定位于迁移的皮质神经元的目标目的地附近,在体外刺激胚胎神经元迁移。在小鼠中,谷氨酸高度定位于迁移的皮质神经元的目标目的地附近。在细胞解离物和皮质切片培养物中评估了谷氨酸诱导的小鼠胚胎皮质细胞迁移。在解离物中,谷氨酸的趋化作用比GABA的作用大10倍,表明对于小鼠皮质细胞,谷氨酸是比GABA更有效的化学引诱剂。因此,不同物种间的皮质化学引诱剂似乎有所不同。微摩尔浓度的谷氨酸刺激神经元趋化性,这种趋化性可被微摩尔浓度的N-甲基-D-天冬氨酸(NMDA)模拟,但不能被其他离子型谷氨酸受体激动剂(α-氨基-3-羟基-5-甲基-4-异恶唑丙酸(AMPA)、海人酸、quisqualate)模拟。做出反应的细胞主要来自未成熟的皮质区域[脑室区(vz)/脑室下区(svz)]。用BrdU脉冲标记培养在NMDA拮抗剂(微摩尔浓度的MK801或氨基吡啶酮(APV))中的皮质切片,结果显示拮抗剂暴露会阻断BrdU阳性细胞从vz/svz迁移到皮质板。聚合酶链反应(PCR)证实vz/svz细胞中存在NMDA受体表达,而电生理学和钙离子成像表明vz/svz细胞对NMDA表现出生理反应。这些研究表明,在小鼠中,谷氨酸可能作为发育中皮质神经元的化学引诱剂,通过NMDA受体激活向细胞发出迁移到皮质板的信号。