Suppr超能文献

瑞士罗特湖缺氧沉积物中产甲烷菌的垂直分布。

Vertical distribution of methanogens in the anoxic sediment of Rotsee (Switzerland).

作者信息

Zepp Falz K, Holliger C, Grosskopf R, Liesack W, Nozhevnikova A N, Müller B, Wehrli B, Hahn D

机构信息

Limnological Research Center, Swiss Federal Institute for Environmental Science and Technology (EAWAG), CH-6047 Kastanienbaum, Switzerland.

出版信息

Appl Environ Microbiol. 1999 Jun;65(6):2402-8. doi: 10.1128/AEM.65.6.2402-2408.1999.

Abstract

Anoxic sediments from Rotsee (Switzerland) were analyzed for the presence and diversity of methanogens by using molecular tools and for methanogenic activity by using radiotracer techniques, in addition to the measurement of chemical profiles. After PCR-assisted sequence retrieval of the 16S rRNA genes (16S rDNA) from the anoxic sediment of Rotsee, cloning, and sequencing, a phylogenetic analysis identified two clusters of sequences and four separated clones. The sequences in cluster 1 grouped with those of Methanosaeta spp., whereas the sequences in cluster 2 comprised the methanogenic endosymbiont of Plagiopyla nasuta. Discriminative oligonucleotide probes were constructed against both clusters and two of the separated clones. These probes were used subsequently for the analysis of indigenous methanogens in a core of the sediment, in addition to domain-specific probes against members of the domains Bacteria and Archaea and the fluorescent stain 4', 6-diamidino-2-phenylindole (DAPI), by fluorescent in situ hybridization. After DAPI staining, the highest microbial density was obtained in the upper sediment layer; this density decreased with depth from (1.01 +/- 0.25) x 10(10) to (2.62 +/- 0.58) x 10(10) cells per g of sediment (dry weight). This zone corresponded to that of highest metabolic activity, as indicated by the ammonia, alkalinity, and pH profiles, whereas the methane profile was constant. Probes Eub338 and Arch915 detected on average 16 and 6% of the DAPI-stained cells as members of the domains Bacteria and Archaea, respectively. Probe Rotcl1 identified on average 4% of the DAPI-stained cells as Methanosaeta spp., which were present throughout the whole core. In contrast, probe Rotcl2 identified only 0.7% of the DAPI-stained cells as relatives of the methanogenic endosymbiont of P. nasuta, which was present exclusively in the upper 2 cm of the sediment. Probes Rotp13 and Rotp17 did not detect any cells. The spatial distribution of the two methanogenic populations corresponded well to the methane production rates determined by incubation with either [14C]acetate or [14C]bicarbonate. Methanogenesis from acetate accounted for almost all of the total methane production, which concurs with the predominance of acetoclastic Methanosaeta spp. that represented on average 91% of the archaeal population. Significant hydrogenotrophic methanogenesis was found only in the organically enriched upper 2 cm of the sediment, where the probably hydrogenotrophic relatives of the methanogenic endosymbiont of P. nasuta, accounting on average for 7% of the archaeal population, were also detected.

摘要

利用分子工具分析了瑞士罗特湖缺氧沉积物中产甲烷菌的存在情况和多样性,并利用放射性示踪技术分析了产甲烷活性,同时还测量了化学剖面。从罗特湖缺氧沉积物中进行16S rRNA基因(16S rDNA)的PCR辅助序列检索、克隆和测序后,系统发育分析确定了两个序列簇和四个分离的克隆。簇1中的序列与甲烷八叠球菌属的序列聚类在一起,而簇2中的序列包括纳氏斜体虫的产甲烷内共生体。针对这两个簇和两个分离的克隆构建了鉴别性寡核苷酸探针。这些探针随后用于沉积物岩心中本地产甲烷菌的分析,此外还使用了针对细菌域和古菌域成员的域特异性探针以及荧光染料4',6-二脒基-2-苯基吲哚(DAPI),通过荧光原位杂交进行分析。DAPI染色后,沉积物上层的微生物密度最高;该密度随深度从每克沉积物(干重)(1.01±0.25)×10¹⁰个细胞降至(2.62±0.58)×10¹⁰个细胞。该区域对应于代谢活性最高的区域,氨、碱度和pH剖面表明了这一点,而甲烷剖面则是恒定不变的。探针Eub338和Arch915分别平均检测到16%和6%的DAPI染色细胞属于细菌域和古菌域成员。探针Rotcl1平均检测到4%的DAPI染色细胞为甲烷八叠球菌属,它们存在于整个岩心中。相比之下,探针Rotcl2仅检测到0.7%的DAPI染色细胞为纳氏斜体虫产甲烷内共生体的亲缘关系菌,它们仅存在于沉积物上部2厘米处。探针Rotp13和Rotp17未检测到任何细胞。这两个产甲烷菌群的空间分布与用[¹⁴C]乙酸盐或[¹⁴C]碳酸氢盐孵育测定的甲烷产生速率非常吻合。乙酸盐产生甲烷几乎占总甲烷产生量的全部,这与以乙酸为食的甲烷八叠球菌属占主导地位相符,该菌平均占古菌群体的91%。仅在沉积物上部2厘米有机富集层中发现了显著的氢营养型产甲烷作用,在该层中也检测到了纳氏斜体虫产甲烷内共生体可能的氢营养型亲缘关系菌,它们平均占古菌群体的7%。

相似文献

1
Vertical distribution of methanogens in the anoxic sediment of Rotsee (Switzerland).
Appl Environ Microbiol. 1999 Jun;65(6):2402-8. doi: 10.1128/AEM.65.6.2402-2408.1999.
2
Acetoclastic and hydrogenotrophic methane production and methanogenic populations in an acidic West-Siberian peat bog.
Environ Microbiol. 2004 Nov;6(11):1159-73. doi: 10.1111/j.1462-2920.2004.00634.x.
3
Analysis of the sulfate-reducing bacterial and methanogenic archaeal populations in contrasting Antarctic sediments.
Appl Environ Microbiol. 2003 Jun;69(6):3181-91. doi: 10.1128/AEM.69.6.3181-3191.2003.
4
Local conditions structure unique archaeal communities in the anoxic sediments of meromictic Lake Kivu.
Microb Ecol. 2012 Aug;64(2):291-310. doi: 10.1007/s00248-012-0034-x. Epub 2012 Mar 20.
5
Vertical distribution of structure and function of the methanogenic archaeal community in Lake Dagow sediment.
Environ Microbiol. 2005 Aug;7(8):1139-49. doi: 10.1111/j.1462-2920.2005.00790.x.
7
Investigation of the methanogen population structure and activity in a brackish lake sediment.
Environ Microbiol. 2005 Jul;7(7):947-60. doi: 10.1111/j.1462-2920.2004.00766.x.
8
Biodiversity of methanogenic and other archaea in the permanently frozen Lake Fryxell, Antarctica.
Appl Environ Microbiol. 2006 Feb;72(2):1663-6. doi: 10.1128/AEM.72.2.1663-1666.2006.
9
Activity and diversity of methanogens in a petroleum hydrocarbon-contaminated aquifer.
Appl Environ Microbiol. 2005 Jan;71(1):149-58. doi: 10.1128/AEM.71.1.149-158.2005.
10
Community structure of Archaea and Bacteria in a profundal lake sediment Lake Kinneret (Israel).
Syst Appl Microbiol. 2007 Apr;30(3):239-54. doi: 10.1016/j.syapm.2006.05.004. Epub 2006 Jul 18.

引用本文的文献

2
Study of Archaeal Diversity in the Arctic Meltwater Lake Region.
Biology (Basel). 2023 Jul 20;12(7):1023. doi: 10.3390/biology12071023.
3
Metagenomic evidence of suppressed methanogenic pathways along soil profile after wetland conversion to cropland.
Front Microbiol. 2022 Sep 20;13:930694. doi: 10.3389/fmicb.2022.930694. eCollection 2022.
6
Water level changes affect carbon turnover and microbial community composition in lake sediments.
FEMS Microbiol Ecol. 2016 May;92(5):fiw035. doi: 10.1093/femsec/fiw035. Epub 2016 Feb 21.
7
The presence of hydrogenotrophic methanogens in the inoculum improves methane gas production in microbial electrolysis cells.
Front Microbiol. 2015 Jan 15;5:778. doi: 10.3389/fmicb.2014.00778. eCollection 2014.
8
Distance-decay and taxa-area relationships for bacteria, archaea and methanogenic archaea in a tropical lake sediment.
PLoS One. 2014 Oct 20;9(10):e110128. doi: 10.1371/journal.pone.0110128. eCollection 2014.
9
Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri.
Appl Environ Microbiol. 2014 Aug;80(15):4599-605. doi: 10.1128/AEM.00895-14.
10
Dynamics of the methanogenic archaea in tropical estuarine sediments.
Archaea. 2013;2013:582646. doi: 10.1155/2013/582646. Epub 2013 Jan 17.

本文引用的文献

1
Competition and coexistence of sulfate-reducing and methanogenic populations in anaerobic biofilms.
Appl Environ Microbiol. 1996 Oct;62(10):3847-57. doi: 10.1128/aem.62.10.3847-3857.1996.
3
Sediment distribution of methanogenic bacteria in lake erie and cleveland harbor.
Appl Environ Microbiol. 1980 Mar;39(3):597-603. doi: 10.1128/aem.39.3.597-603.1980.
4
ARB: a software environment for sequence data.
Nucleic Acids Res. 2004 Feb 25;32(4):1363-71. doi: 10.1093/nar/gkh293. Print 2004.
5
Analysis of broad-scale differences in microbial community composition of two pristine forest soils.
Syst Appl Microbiol. 1998 Dec;21(4):579-87. doi: 10.1016/S0723-2020(98)80070-2.
6
Novel euryarchaeotal lineages detected on rice roots and in the anoxic bulk soil of flooded rice microcosms.
Appl Environ Microbiol. 1998 Dec;64(12):4983-9. doi: 10.1128/AEM.64.12.4983-4989.1998.
8
Phylogenetic diversity of Archaea in sediment samples from a coastal salt marsh.
Appl Environ Microbiol. 1997 Dec;63(12):4729-33. doi: 10.1128/aem.63.12.4729-4733.1997.
9
Whole-cell hybridization of Methanosarcina cells with two new oligonucleotide probes.
Appl Environ Microbiol. 1997 Aug;63(8):3043-50. doi: 10.1128/aem.63.8.3043-3050.1997.
10
Population structure of microbial communities associated with two deep, anaerobic, alkaline aquifers.
Appl Environ Microbiol. 1997 Apr;63(4):1498-504. doi: 10.1128/aem.63.4.1498-1504.1997.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验