Li K, Xu F, Eriksson K E
Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602-7229, USA.
Appl Environ Microbiol. 1999 Jun;65(6):2654-60. doi: 10.1128/AEM.65.6.2654-2660.1999.
Several fungal laccases have been compared for the oxidation of a nonphenolic lignin dimer, 1-(3, 4-dimethoxyphenyl)-2-(2-methoxyphenoxy)propan-1,3-diol (I), and a phenolic lignin model compound, phenol red, in the presence of the redox mediators 1-hydroxybenzotriazole (1-HBT) or violuric acid. The oxidation rates of dimer I by the laccases were in the following order: Trametes villosa laccase (TvL) > Pycnoporus cinnabarinus laccase (PcL) > Botrytis cinerea laccase (BcL) > Myceliophthora thermophila laccase (MtL) in the presence of either 1-HBT or violuric acid. The order is the same if the laccases are used at the same molar concentration or added to the same activity (with ABTS [2, 2'-azinobis (3-ethylbenzothiazoline-6-sulfonic acid)] as a substrate). During the oxidation of dimer I, both 1-HBT and violuric acid were to some extent consumed. Their consumption rates also follow the above order of laccases, i.e., TvL > PcL > BcL > MtL. Violuric acid allowed TvL and PcL to oxidize dimer I much faster than 1-HBT, while BcL and violuric acid oxidized dimer I more slowly than BcL and 1-HBT. The oxidation rate of dimer I is dependent upon both kcat and the stability of the laccase. Both 1-HBT and violuric acid inactivated the laccases, violuric acid to a greater extent than 1-HBT. The presence of dimer I or phenol red in the reaction mixture slowed down this inactivation. The inactivation is mainly due to the reaction of the redox mediator free radical with the laccases. We did not find any relationship between the carbohydrate content of the laccases and their inactivation. When the redox potential of the laccases is in the range of 750 to 800 mV, i.e., above that of the redox mediator, it does not affect kcat and the oxidation rate of dimer I.
在氧化还原介质1-羟基苯并三唑(1-HBT)或紫尿酸存在的情况下,对几种真菌漆酶氧化一种非酚类木质素二聚体1-(3,4-二甲氧基苯基)-2-(2-甲氧基苯氧基)丙烷-1,3-二醇(I)和一种酚类木质素模型化合物酚红的情况进行了比较。在1-HBT或紫尿酸存在下,漆酶对二聚体I的氧化速率顺序如下:绒毛栓菌漆酶(TvL)>朱红密孔菌漆酶(PcL)>灰葡萄孢漆酶(BcL)>嗜热毁丝霉漆酶(MtL)。如果漆酶以相同的摩尔浓度使用或添加到相同的活性(以ABTS[2,2'-偶氮双(3-乙基苯并噻唑啉-6-磺酸)]为底物),顺序相同。在二聚体I的氧化过程中,1-HBT和紫尿酸都有一定程度的消耗。它们的消耗速率也遵循上述漆酶顺序,即TvL>PcL>BcL>MtL。紫尿酸使TvL和PcL氧化二聚体I的速度比1-HBT快得多,而BcL与紫尿酸氧化二聚体I的速度比BcL与1-HBT慢。二聚体I的氧化速率取决于kcat和漆酶的稳定性。1-HBT和紫尿酸都会使漆酶失活,紫尿酸的失活程度比1-HBT更大。反应混合物中存在二聚体I或酚红会减缓这种失活。失活主要是由于氧化还原介质自由基与漆酶的反应。我们没有发现漆酶的碳水化合物含量与其失活之间存在任何关系。当漆酶的氧化还原电位在750至800 mV范围内,即高于氧化还原介质的电位时,它不会影响kcat和二聚体I的氧化速率。