Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan.
Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan.
Sci Rep. 2019 Aug 2;9(1):11216. doi: 10.1038/s41598-019-46038-6.
The bacterial flagellar motor is a unique supramolecular complex which converts ion flow into rotational force. Many biological devices mainly use two types of ions, proton and sodium ion. This is probably because of the fact that life originated in seawater, which is rich in protons and sodium ions. The polar flagellar motor in Vibrio is coupled with sodium ion and the energy converting unit of the motor is composed of two membrane proteins, PomA and PomB. It has been shown that the ion binding residue essential for ion transduction is the conserved aspartic acid residue (PomB-D24) in the PomB transmembrane region. To reveal the mechanism of ion selectivity, we identified essential residues, PomA-T158 and PomA-T186, other than PomB-D24, in the Na-driven flagellar motor. It has been shown that the side chain of threonine contacts Na in Na-coupled transporters. We monitored the Na-binding specific structural changes using ATR-FTIR spectroscopy. The signals were abolished in PomA-T158A and -T186A, as well as in PomB-D24N. Molecular dynamics simulations further confirmed the strong binding of Na to D24 and showed that T158A and T186A hindered the Na binding and transportation. The data indicate that two threonine residues (PomA-T158 and PomA-T186), together with PomB-D24, are important for Na conduction in the Vibrio flagellar motor. The results contribute to clarify the mechanism of ion recognition and conversion of ion flow into mechanical force.
细菌鞭毛马达是一种独特的超分子复合物,可将离子流转化为旋转力。许多生物器件主要使用两种类型的离子,质子和钠离子。这可能是因为生命起源于富含质子和钠离子的海水。弧菌的极性鞭毛马达与钠离子偶联,马达的能量转换单元由两个膜蛋白 PomA 和 PomB 组成。已经表明,离子转导必需的离子结合残基是 PomB 跨膜区中保守的天冬氨酸残基(PomB-D24)。为了揭示离子选择性的机制,我们鉴定了 Na 驱动的鞭毛马达中除了 PomB-D24 之外的必需残基 PomA-T158 和 PomA-T186。已经表明苏氨酸的侧链与 Na 结合在 Na 偶联转运蛋白中。我们使用 ATR-FTIR 光谱监测 Na 结合的特异性结构变化。在 PomA-T158A 和 -T186A 以及 PomB-D24N 中,信号被消除。分子动力学模拟进一步证实了 Na 与 D24 的强结合,并表明 T158A 和 T186A 阻碍了 Na 的结合和运输。数据表明,两个苏氨酸残基(PomA-T158 和 PomA-T186)与 PomB-D24 一起,对于弧菌鞭毛马达中的 Na 传导很重要。结果有助于阐明离子识别和离子流转化为机械力的机制。