Suppr超能文献

一个保守脯氨酸残基在介导与Cx32间隙连接电压门控相关的构象变化中的作用。

The role of a conserved proline residue in mediating conformational changes associated with voltage gating of Cx32 gap junctions.

作者信息

Ri Y, Ballesteros J A, Abrams C K, Oh S, Verselis V K, Weinstein H, Bargiello T A

机构信息

Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461, USA.

出版信息

Biophys J. 1999 Jun;76(6):2887-98. doi: 10.1016/S0006-3495(99)77444-8.

Abstract

We have explored the role of a proline residue located at position 87 in the second transmembrane segment (TM2) of gap junctions in the mechanism of voltage-dependent gating of connexin32 (Cx32). Substitution of this proline (denoted Cx32P87) with residues G, A, or V affects channel function in a progressive manner consistent with the expectation that a proline kink (PK) motif exists in the second transmembrane segment (TM2) of this connexin. Mutations of the preceding threonine residue T86 to S, A, C, V, N, or L shift the conductance-voltage relation of wild-type Cx32, such that the mutated channels close at smaller transjunctional voltages. The observed shift in voltage dependence is consistent with a reduction in the open probability of the mutant hemichannels at a transjunctional voltage (Vj) of 0 mV. In both cases in which kinetics were examined, the time constants for reaching steady state were faster for T86N and T86A than for wild type at comparable voltages, suggesting that the T86 mutations cause the energetic destabilization of the open state relative to the other states of the channel protein. The structural underpinnings of the observed effects were explored with Monte Carlo simulations. The conformational space of TM2 helices was found to differ for the T86A, V, N, and L mutants, which produce a less bent helix ( approximately 20 degrees bend angle) compared to the wild type, which has a approximately 37 degrees bend angle. The greater bend angle of the wild-type helix reflects the propensity of the T86 residue to hydrogen bond with the backbone carbonyl of amino acid residue I82. The relative differences in propensity for hydrogen bonding of the mutants relative to the wild-type threonine residue in the constructs we studied (T86A, V, N, L, S, and C) correlate with the shift in the conductance-voltage relation observed for T86 mutations. The data are consistent with a structural model in which the open conformation of the Cx32 channel corresponds to a more bent TM2 helix, and the closed conformation corresponds to a less bent helix. We propose that the modulation of the hydrogen-bonding potential of the T86 residue alters the bend angle of the PK motif and mediates conformational changes between open and closed channel states.

摘要

我们探究了位于连接蛋白32(Cx32)第二个跨膜片段(TM2)第87位的脯氨酸残基在Cx32电压依赖性门控机制中的作用。用甘氨酸(G)、丙氨酸(A)或缬氨酸(V)取代该脯氨酸(称为Cx32P87)会以渐进方式影响通道功能,这与该连接蛋白的第二个跨膜片段(TM2)中存在脯氨酸扭结(PK)基序的预期一致。将前一个苏氨酸残基T86突变为丝氨酸(S)、丙氨酸(A)、半胱氨酸(C)、缬氨酸(V)、天冬酰胺(N)或亮氨酸(L)会改变野生型Cx32的电导 - 电压关系,使得突变后的通道在较小的跨连接电压下关闭。观察到的电压依赖性变化与突变半通道在0 mV跨连接电压(Vj)下开放概率的降低一致。在研究动力学的两种情况下,在可比电压下,T86N和T86A达到稳态的时间常数比野生型更快,这表明T86突变导致通道蛋白开放状态相对于其他状态的能量不稳定。通过蒙特卡罗模拟探究了观察到的效应的结构基础。发现T86A, V, N和L突变体的TM2螺旋构象空间与野生型不同,野生型的弯曲角度约为37度,而这些突变体产生的螺旋弯曲程度较小(约20度弯曲角度)。野生型螺旋较大的弯曲角度反映了T86残基与氨基酸残基I82的主链羰基形成氢键的倾向。在我们研究的构建体(T86A, V, N, L, S和C)中,突变体相对于野生型苏氨酸残基形成氢键倾向的相对差异与T86突变观察到的电导 - 电压关系变化相关。数据与一个结构模型一致,其中Cx32通道的开放构象对应于更弯曲的TM2螺旋,而关闭构象对应于较不弯曲的螺旋。我们提出,T86残基氢键潜力的调节改变了PK基序的弯曲角度,并介导了开放和关闭通道状态之间的构象变化。

相似文献

3
Emerging issues of connexin channels: biophysics fills the gap.
Q Rev Biophys. 2001 Aug;34(3):325-472. doi: 10.1017/s0033583501003705.
5
Opposite voltage gating polarities of two closely related connexins.
Nature. 1994 Mar 24;368(6469):348-51. doi: 10.1038/368348a0.
7
Molecular dissection of transjunctional voltage dependence in the connexin-32 and connexin-43 junctions.
Biophys J. 1999 Sep;77(3):1374-83. doi: 10.1016/S0006-3495(99)76986-9.
8
Chimeric evidence for a role of the connexin cytoplasmic loop in gap junction channel gating.
Pflugers Arch. 1996 Apr;431(6):844-52. doi: 10.1007/s004240050076.
9
Different ionic selectivities for connexins 26 and 32 produce rectifying gap junction channels.
Biophys J. 1999 Dec;77(6):2968-87. doi: 10.1016/S0006-3495(99)77129-8.
10
Structure of the amino terminus of a gap junction protein.
Arch Biochem Biophys. 2000 Sep 15;381(2):181-90. doi: 10.1006/abbi.2000.1989.

引用本文的文献

1
Calcium induced N-terminal gating and pore collapse in connexin-46/50 gap junctions.
bioRxiv. 2025 Feb 14:2025.02.12.637955. doi: 10.1101/2025.02.12.637955.
2
Reversible lipid mediated pH-gating of connexin-46/50 by cryo-EM.
bioRxiv. 2025 Feb 14:2025.02.12.637953. doi: 10.1101/2025.02.12.637953.
3
A pore locus in the E1 domain differentially regulates Cx26 and Cx30 hemichannel function.
J Gen Physiol. 2024 Nov 4;156(11). doi: 10.1085/jgp.202313502. Epub 2024 Sep 20.
4
5
Identification and classification of innexin gene transcripts in the central nervous system of the terrestrial slug Limax valentianus.
PLoS One. 2021 Apr 15;16(4):e0244902. doi: 10.1371/journal.pone.0244902. eCollection 2021.
6
Alterations in connexin 26 protein structure from lethal keratitis-ichthyosis-deafness syndrome mutations A88V and G45E.
J Dermatol Sci. 2019 Sep;95(3):119-122. doi: 10.1016/j.jdermsci.2019.07.002. Epub 2019 Jul 10.
7
Cues to Opening Mechanisms From Electric Field Excitation of Cx26 Hemichannel and Mutagenesis Studies in HeLa Transfectans.
Front Mol Neurosci. 2018 May 31;11:170. doi: 10.3389/fnmol.2018.00170. eCollection 2018.
8
The syndromic deafness mutation G12R impairs fast and slow gating in Cx26 hemichannels.
J Gen Physiol. 2018 May 7;150(5):697-711. doi: 10.1085/jgp.201711782. Epub 2018 Apr 11.
9
Connexinopathies: a structural and functional glimpse.
BMC Cell Biol. 2016 May 24;17 Suppl 1(Suppl 1):17. doi: 10.1186/s12860-016-0092-x.

本文引用的文献

1
Optimization by simulated annealing.
Science. 1983 May 13;220(4598):671-80. doi: 10.1126/science.220.4598.671.
2
Three-dimensional structure of a recombinant gap junction membrane channel.
Science. 1999 Feb 19;283(5405):1176-80. doi: 10.1126/science.283.5405.1176.
3
4
Structure of cardiac gap junction intercellular channels.
J Struct Biol. 1998;121(2):231-45. doi: 10.1006/jsbi.1998.3972.
7
Connexin32 and X-linked Charcot-Marie-Tooth disease.
Neurobiol Dis. 1997;4(3-4):221-30. doi: 10.1006/nbdi.1997.0152.
9
X-ray structure of bacteriorhodopsin at 2.5 angstroms from microcrystals grown in lipidic cubic phases.
Science. 1997 Sep 12;277(5332):1676-81. doi: 10.1126/science.277.5332.1676.
10
Identification of a pore lining segment in gap junction hemichannels.
Biophys J. 1997 May;72(5):1946-53. doi: 10.1016/S0006-3495(97)78840-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验