Suppr超能文献

连接蛋白26和32的不同离子选择性产生整流性缝隙连接通道。

Different ionic selectivities for connexins 26 and 32 produce rectifying gap junction channels.

作者信息

Suchyna T M, Nitsche J M, Chilton M, Harris A L, Veenstra R D, Nicholson B J

机构信息

Department of Biological Sciences, SUNY at Buffalo, Buffalo, New York 14260, USA.

出版信息

Biophys J. 1999 Dec;77(6):2968-87. doi: 10.1016/S0006-3495(99)77129-8.

Abstract

The functional diversity of gap junction intercellular channels arising from the large number of connexin isoforms is significantly increased by heterotypic interactions between members of this family. This is particularly evident in the rectifying behavior of Cx26/Cx32 heterotypic channels (. Proc. Natl. Acad. Sci. USA. 88:8410-8414). The channel properties responsible for producing the rectifying current observed for Cx26/Cx32 heterotypic gap junction channels were determined in transfected mouse neuroblastoma 2A (N2A) cells. Transfectants revealed maximum unitary conductances (gamma(j)) of 135 pS for Cx26 and 53 pS for Cx32 homotypic channels in 120 mM KCl. Anionic substitution of glutamate for Cl indicated that Cx26 channels favored cations by 2.6:1, whereas Cx32 channels were relatively nonselective with respect to charge. In Cx26/Cx32 heterotypic cell pairs, the macroscopic fast rectification of the current-voltage relationship was fully explained at the single-channel level by a rectifying gamma(j) that increased by a factor of 2.9 as the transjunctional voltage (V(j)) changed from -100 to +100 mV with the Cx26 cell as the positive pole. A model of electrodiffusion of ions through the gap junction pore based on Nernst-Planck equations for ion concentrations and the Poisson equation for the electrical potential within the junction is developed. Selectivity characteristics are ascribed to each hemichannel based on either pore features (treated as uniform along the length of the hemichannel) or entrance effects unique to each connexin. Both analytical GHK approximations and full numerical solutions predict rectifying characteristics for Cx32/Cx26 heterotypic channels, although not to the full extent seen empirically. The model predicts that asymmetries in the conductance/permeability properties of the hemichannels (also cast as Donnan potentials) will produce either an accumulation or a depletion of ions within the channel, depending on voltage polarity, that will result in rectification.

摘要

连接蛋白家族众多亚型所产生的间隙连接细胞间通道的功能多样性,因该家族成员间的异型相互作用而显著增加。这在Cx26/Cx32异型通道的整流行为中尤为明显(《美国国家科学院院刊》88:8410 - 8414)。在转染的小鼠神经母细胞瘤2A(N2A)细胞中,确定了导致Cx26/Cx32异型间隙连接通道出现整流电流的通道特性。转染细胞显示,在120 mM KCl中,Cx26同型通道的最大单位电导(γ(j))为135 pS,Cx32同型通道为53 pS。用谷氨酸阴离子取代Cl表明,Cx26通道对阳离子的偏好为2.6:1,而Cx32通道在电荷方面相对无选择性。在Cx26/Cx32异型细胞对中,电流 - 电压关系的宏观快速整流在单通道水平上完全可以通过整流γ(j)来解释,当跨连接电压(V(j))从 - 100 mV变为 + 100 mV且Cx26细胞为正极时,γ(j)增加2.9倍。基于离子浓度的能斯特 - 普朗克方程和连接体内电势的泊松方程,建立了离子通过间隙连接孔的电扩散模型。根据孔的特征(沿半通道长度视为均匀)或每种连接蛋白特有的入口效应,将选择性特征归因于每个半通道。尽管在经验上未达到完全程度,但解析的GHK近似法和完整的数值解都预测了Cx32/Cx26异型通道的整流特性。该模型预测,半通道的电导/通透性特性的不对称性(也表现为唐南电位)将根据电压极性在通道内产生离子积累或耗尽,从而导致整流。

相似文献

1
Different ionic selectivities for connexins 26 and 32 produce rectifying gap junction channels.
Biophys J. 1999 Dec;77(6):2968-87. doi: 10.1016/S0006-3495(99)77129-8.
5
Molecular analysis of voltage dependence of heterotypic gap junctions formed by connexins 26 and 32.
Biophys J. 1992 Apr;62(1):183-93; discussion 193-5. doi: 10.1016/S0006-3495(92)81804-0.
6
Emerging issues of connexin channels: biophysics fills the gap.
Q Rev Biophys. 2001 Aug;34(3):325-472. doi: 10.1017/s0033583501003705.
9
Selectivity of connexin-specific gap junctions does not correlate with channel conductance.
Circ Res. 1995 Dec;77(6):1156-65. doi: 10.1161/01.res.77.6.1156.
10
A mechanism of gap junction docking revealed by functional rescue of a human-disease-linked connexin mutant.
J Cell Sci. 2013 Jul 15;126(Pt 14):3113-20. doi: 10.1242/jcs.123430. Epub 2013 May 17.

引用本文的文献

1
The rectification of heterotypic Cx46/Cx50 gap junction channels depends on intracellular magnesium.
Biophys Rep. 2024 Oct 31;10(5):336-348. doi: 10.52601/bpr.2024.240015.
4
Structures of wild-type and selected CMT1X mutant connexin 32 gap junction channels and hemichannels.
Sci Adv. 2023 Sep;9(35):eadh4890. doi: 10.1126/sciadv.adh4890. Epub 2023 Aug 30.
5
Role of the Connexin C-terminus in skin pattern formation of Zebrafish.
BBA Adv. 2021 Mar 17;1:100006. doi: 10.1016/j.bbadva.2021.100006. eCollection 2021.
6
Divergence between Hemichannel and Gap Junction Permeabilities of Connexin 30 and 26.
Life (Basel). 2023 Jan 31;13(2):390. doi: 10.3390/life13020390.
7
Hypertensive Nephropathy: Unveiling the Possible Involvement of Hemichannels and Pannexons.
Int J Mol Sci. 2022 Dec 14;23(24):15936. doi: 10.3390/ijms232415936.
9
Analysis of Hemichannels and Gap Junctions: Application and Extension of the Passive Transmembrane Ion Transport Model.
Front Cell Neurosci. 2021 Apr 7;15:596953. doi: 10.3389/fncel.2021.596953. eCollection 2021.
10
Role of ROS/RNS in Preeclampsia: Are Connexins the Missing Piece?
Int J Mol Sci. 2020 Jun 30;21(13):4698. doi: 10.3390/ijms21134698.

本文引用的文献

1
The effect of sodium ions on the electrical activity of giant axon of the squid.
J Physiol. 1949 Mar 1;108(1):37-77. doi: 10.1113/jphysiol.1949.sp004310.
2
Sodium permeability in toad nerve and in squid nerve.
J Physiol. 1960 Jun;152(1):159-66. doi: 10.1113/jphysiol.1960.sp006477.
3
Ion permeation and glutamate residues linked by Poisson-Nernst-Planck theory in L-type calcium channels.
Biophys J. 1998 Sep;75(3):1287-305. doi: 10.1016/S0006-3495(98)74048-2.
4
Run, don't hop, through the nearest calcium channel.
Biophys J. 1998 Sep;75(3):1142-3. doi: 10.1016/S0006-3495(98)74033-0.
7
Evidence for heteromeric gap junction channels formed from rat connexin43 and human connexin37.
Am J Physiol. 1997 Oct;273(4):C1386-96. doi: 10.1152/ajpcell.1997.273.4.C1386.
8
Cell-free synthesis and assembly of connexins into functional gap junction membrane channels.
EMBO J. 1997 May 15;16(10):2703-16. doi: 10.1093/emboj/16.10.2703.
10
Monovalent ion selectivity sequences of the rat connexin43 gap junction channel.
J Gen Physiol. 1997 Apr;109(4):491-507. doi: 10.1085/jgp.109.4.491.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验