Knight R D, Freeland S J, Landweber L F
Dept of Ecology and Evolutionary Biology, Guyot Hall, Princeton University, Princeton, NJ 08544-1003, USA.
Trends Biochem Sci. 1999 Jun;24(6):241-7. doi: 10.1016/s0968-0004(99)01392-4.
The genetic code might be a historical accident that was fixed in the last common ancestor of modern organisms. 'Adaptive', 'historical' and 'chemical' arguments, however, challenge such a 'frozen accident' model. These arguments propose that the current code is somehow optimal, reflects the expansion of a more primitive code to include more amino acids, or is a consequence of direct chemical interactions between RNA and amino acids, respectively. Such models are not mutually exclusive, however. They can be reconciled by an evolutionary model whereby stereochemical interactions shaped the initial code, which subsequently expanded through biosynthetic modification of encoded amino acids and, finally, was optimized through codon reassignment. Alternatively, all three forces might have acted in concert to assign the 20 'natural' amino acids to their present positions in the genetic code.
遗传密码可能是一个历史偶然事件,它在现代生物的最后一个共同祖先中固定下来。然而,“适应性”“历史性”和“化学性”观点对这种“冻结偶然”模型提出了挑战。这些观点分别认为,当前的密码在某种程度上是最优的,反映了一个更原始的密码扩展以纳入更多氨基酸,或者是RNA与氨基酸之间直接化学相互作用的结果。然而,这些模型并非相互排斥。它们可以通过一个进化模型来协调,即立体化学相互作用塑造了初始密码,随后通过对编码氨基酸的生物合成修饰而扩展,最后通过密码子重新分配进行优化。或者,所有这三种力量可能共同作用,将20种“天然”氨基酸分配到遗传密码中它们目前的位置。