Suppr超能文献

含有源自人类表皮和肝脏中细胞色素P450 2C基因亚家族(CYP2C)不同成员外显子的RNA分子。

RNA molecules containing exons originating from different members of the cytochrome P450 2C gene subfamily (CYP2C) in human epidermis and liver.

作者信息

Zaphiropoulos P G

机构信息

Department of Bioscience, Center for Nutrition and Toxicology, Karolinska Institute, Novum, 141 57 Huddinge, Sweden.

出版信息

Nucleic Acids Res. 1999 Jul 1;27(13):2585-90. doi: 10.1093/nar/27.13.2585.

Abstract

Reverse transcription-PCR analysis in human epidermis, using primers from CYP2C18 and CYP2C19, revealed products containing combinations between canonically defined exons of these two genes. The major RNA species identified contained 2C18 exon 8 spliced with 2C19 exon 2. However, the terminal exons 1 and 9 were never detected in any of these composite molecules. When similar experiments were performed with liver RNA, exons 1 and 9 of both 2C18 and 2C19 were readily identified in composite 2C18/2C19 RNAs. Moreover, molecules containing 2C9 sequences spliced with 2C18 exons were also detected. These findings suggest that during the process of RNA splicing of the 2C transcripts, various exon juxtaposition events may occur, including combinations between exons of distinct genes. However, the frequency of these events is quite low and the levels of the composite RNA molecules are generally estimated at less than one molecule per cell. Since the order of these genes on chromosome 10q24 is CYP2C18 - CYP2C19 - CYP2C9, it is conceivable that the composite RNAs may result from multiple canonical and inverse splicing events of a long pre-mRNA that encompasses the three genes. However, these molecules could also be rationalized as being the products of trans splicing phenomena between distinct pre-mRNAs.

摘要

利用CYP2C18和CYP2C19的引物对人表皮进行逆转录PCR分析,结果显示产物包含这两个基因经典定义外显子之间的组合。鉴定出的主要RNA种类包含与2C19外显子2拼接的2C18外显子8。然而,在任何这些复合分子中都从未检测到末端外显子1和9。当用肝脏RNA进行类似实验时,在复合的2C18/2C19 RNA中很容易鉴定出2C18和2C19的外显子1和9。此外,还检测到了包含与2C18外显子拼接的2C9序列的分子。这些发现表明,在2C转录本的RNA剪接过程中,可能会发生各种外显子并列事件,包括不同基因外显子之间的组合。然而,这些事件的频率相当低,复合RNA分子的水平通常估计为每个细胞少于一个分子。由于这些基因在染色体10q24上的顺序是CYP2C18 - CYP2C19 - CYP2C9,可以想象复合RNA可能是由包含这三个基因的长前体mRNA的多个经典和反向剪接事件产生的。然而,这些分子也可以合理地解释为不同前体mRNA之间反式剪接现象的产物。

相似文献

2
The human CYP2C locus: a prototype for intergenic and exon repetition splicing events.
Genomics. 2000 Feb 1;63(3):433-8. doi: 10.1006/geno.1999.6063.
3
Intergenic transcripts containing a novel human cytochrome P450 2C exon 1 spliced to sequences from the CYP2C9 gene.
Mol Biol Evol. 2001 Oct;18(10):1841-8. doi: 10.1093/oxfordjournals.molbev.a003726.
5
Gene structure of CYP2C8 and extrahepatic distribution of the human CYP2Cs.
J Biochem Mol Toxicol. 1999;13(6):289-95. doi: 10.1002/(sici)1099-0461(1999)13:6<289::aid-jbt1>3.0.co;2-n.
9
Gene structure and upstream regulatory regions of human CYP2C9 and CYP2C18.
Biochem Biophys Res Commun. 1993 Jul 15;194(1):194-201. doi: 10.1006/bbrc.1993.1803.

引用本文的文献

1
Circular and Fusion RNAs in Medulloblastoma Development.
Cancers (Basel). 2022 Jun 26;14(13):3134. doi: 10.3390/cancers14133134.
2
Chimeric RNAs and their implications in cancer.
Curr Opin Genet Dev. 2018 Feb;48:36-43. doi: 10.1016/j.gde.2017.10.002. Epub 2017 Nov 5.
3
The Landscape of long noncoding RNA classification.
Trends Genet. 2015 May;31(5):239-51. doi: 10.1016/j.tig.2015.03.007. Epub 2015 Apr 10.
4
Functional polymorphisms in the CYP2C19 gene contribute to digestive system cancer risk: evidence from 11,042 subjects.
PLoS One. 2013 Jul 16;8(7):e66865. doi: 10.1371/journal.pone.0066865. Print 2013.
5
Short homologous sequences are strongly associated with the generation of chimeric RNAs in eukaryotes.
J Mol Evol. 2009 Jan;68(1):56-65. doi: 10.1007/s00239-008-9187-0. Epub 2008 Dec 17.
6
Tandem chimerism as a means to increase protein complexity in the human genome.
Genome Res. 2006 Jan;16(1):37-44. doi: 10.1101/gr.4145906. Epub 2005 Dec 12.
7
Transcription-mediated gene fusion in the human genome.
Genome Res. 2006 Jan;16(1):30-6. doi: 10.1101/gr.4137606. Epub 2005 Dec 12.
9
Clinical significance of the cytochrome P450 2C19 genetic polymorphism.
Clin Pharmacokinet. 2002;41(12):913-58. doi: 10.2165/00003088-200241120-00002.

本文引用的文献

2
Dissecting the regulatory circuitry of a eukaryotic genome.
Cell. 1998 Nov 25;95(5):717-28. doi: 10.1016/s0092-8674(00)81641-4.
3
Natural trans-splicing in carnitine octanoyltransferase pre-mRNAs in rat liver.
Proc Natl Acad Sci U S A. 1998 Oct 13;95(21):12185-90. doi: 10.1073/pnas.95.21.12185.
4
Gene clusters and polycistronic transcription in eukaryotes.
Bioessays. 1998 Jun;20(6):480-7. doi: 10.1002/(SICI)1521-1878(199806)20:6<480::AID-BIES6>3.0.CO;2-Q.
5
Arginine/serine-rich domains of SR proteins can function as activators of pre-mRNA splicing.
Mol Cell. 1998 Apr;1(5):765-71. doi: 10.1016/s1097-2765(00)80076-3.
6
The function of multisite splicing enhancers.
Mol Cell. 1998 Feb;1(3):449-55. doi: 10.1016/s1097-2765(00)80045-3.
7
Identification of functional exonic splicing enhancer motifs recognized by individual SR proteins.
Genes Dev. 1998 Jul 1;12(13):1998-2012. doi: 10.1101/gad.12.13.1998.
9
Human Tra2 proteins are sequence-specific activators of pre-mRNA splicing.
Cell. 1998 Apr 3;93(1):139-48. doi: 10.1016/s0092-8674(00)81153-8.
10
A coactivator of pre-mRNA splicing.
Genes Dev. 1998 Apr 1;12(7):996-1009. doi: 10.1101/gad.12.7.996.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验