Begg M D, Panageas K S
Division of Biostatistics, Columbia School of Public Health, New York, New York 10032, USA.
Stat Med. 1999 May 15;18(9):1087-100. doi: 10.1002/(sici)1097-0258(19990515)18:9<1087::aid-sim101>3.0.co;2-c.
We propose a simple correction factor for the variance of the logarithm of the common odds ratio estimated by the method of Mantel and Haenszel from a series of (2 x 2) tables when data are cluster correlated. The adjustment is applied to the variance estimators proposed by Hauck and by Robins, Breslow and Greenland for the log of the Mantel-Haenszel common odds ratio, and its performance is evaluated in a simulation study. The key features of the proposed adjustment are: (i) it has closed-form; (ii) it can accommodate covariates defined at the cluster-specific level, the site-specific level, or both; and (iii) it does not require the user to specify a particular correlation structure for the response data. The correction derives from Liang and Zeger's generalized estimating equations (GEE) technique for logistic regression modelling. Via simulation, we examine empirical versus nominal coverage probabilities for interval estimation of the common odds ratio using adjusted and unadjusted variance estimates, and we present ratios of observed to estimated variances. Results are compared to those obtained from the fully iterated GEE analysis. The characteristics of the simulation study mimic scenarios common in the periodontal research setting, with small numbers of subjects (N = 25, 50), moderate numbers of sites per cluster (m = 4, 16, 32), and modest intracluster correlation levels (rho = 0.0, 0.1, 0.2, 0.3). Results show that adjusted confidence intervals (applied to the Hauck or the Robins, Breslow, Greenland variance estimate) provide coverage probabilities close to the nominal level for the Mantel--Haenszel common odds ratio over a variety of cluster sizes and levels of correlation.
当数据存在聚类相关性时,我们针对通过Mantel和Haenszel方法从一系列(2×2)表格中估计的共同优势比的对数方差,提出了一个简单的校正因子。该调整应用于Hauck以及Robins、Breslow和Greenland提出的用于Mantel-Haenszel共同优势比对数的方差估计量,并在模拟研究中对其性能进行了评估。所提出调整的关键特征包括:(i)它具有封闭形式;(ii)它可以纳入在聚类特定水平、位点特定水平或两者定义的协变量;(iii)它不要求用户为响应数据指定特定的相关结构。该校正源自Liang和Zeger用于逻辑回归建模的广义估计方程(GEE)技术。通过模拟,我们使用调整和未调整的方差估计量,检验了共同优势比区间估计的经验覆盖率与名义覆盖率,并给出了观察方差与估计方差的比率。将结果与通过完全迭代GEE分析获得的结果进行了比较。模拟研究的特征模仿了牙周病研究环境中常见的场景,包括少量受试者(N = 25、50)、每个聚类中等数量的位点(m = 4、16、32)以及适度的聚类内相关水平(rho = 0.0、0.1、0.2、0.3)。结果表明,对于各种聚类大小和相关水平,调整后的置信区间(应用于Hauck或Robins、Breslow、Greenland方差估计量)为Mantel-Haenszel共同优势比提供了接近名义水平的覆盖率。