Suppr超能文献

Fabrication, characterization and evaluation of bioceramic hollow microspheres used as microcarriers for 3-D bone tissue formation in rotating bioreactors.

作者信息

Qiu Q Q, Ducheyne P, Ayyaswamy P S

机构信息

Center for Bioactive Materials and Tissue Engineering, Department of Bioengineering, University of Pennsylvania, Philadelphia, USA.

出版信息

Biomaterials. 1999 Jun;20(11):989-1001. doi: 10.1016/s0142-9612(98)00183-5.

Abstract

Novel bioactive ceramic hollow microspheres with an apparent density in the range 0.8-1.0 g cm(-3) have been developed as microcarriers for 3-D bone tissue formation in rotating-wall vessels (RWV). Hollow ceramic microspheres with a composition of 58-72% SiO2, 28-42% Al2O3 (wt%) and an apparent density 0.8-1.0 g cm(-3) were pretreated in 1.0 N NaOH for 2 h before being coated with synthesized calcium hydroxyapatite (HA) particulate sol. The HA-coated hollow microspheres were sintered for 1 h at 600, 800 and 1000 degrees C. SEM analysis revealed that the grain size and pore size of the calcium phosphate coating increased with the sintering temperature. FTIR analysis showed that crystalline calcium hydroxyapatite was present in the coatings sintered at 600 and 800 degrees C. When sintered at 1000 degrees C, the coating consisted of alpha-tricalcium phosphate. All the coatings adhered well, independent of sintering temperature. The trajectory analysis revealed that the hollow microsphere remained suspended in a rotating-wall vessel (RWV), and experienced a low shear stress (approximately 0.6 dyn cm(-2)). Cell culture studies using rat bone marrow stromal cells and osteosarcoma cells (ROS 17/2.8) showed that the cells attached to and formed 3-D aggregates with the hollow microspheres in a RWV. Extracellular matrix was observed in the aggregates. These data suggest that these hollow bioactive ceramic microspheres can be used as microcarriers for 3-D bone tissue formation in vitro, as well as for the study of the effects of microgravity on bone cell functions.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验