Suppr超能文献

代谢途径中过渡时间理论的推广:一种几何方法。

Generalization of the theory of transition times in metabolic pathways: a geometrical approach.

作者信息

Lloréns M, Nuño J C, Rodríguez Y, Meléndez-Hevia E, Montero F

机构信息

Departamento de Bioquímica y Biología Molecular I, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain.

出版信息

Biophys J. 1999 Jul;77(1):23-36. doi: 10.1016/S0006-3495(99)76869-4.

Abstract

Cell metabolism is able to respond to changes in both internal parameters and boundary constraints. The time any system variable takes to make this response has relevant implications for understanding the evolutionary optimization of metabolism as well as for biotechnological applications. This work is focused on estimating the magnitude of the average time taken by any observable of the system to reach a new state when either a perturbation or a persistent variation occurs. With this aim, a new variable, called characteristic time, based on geometric considerations, is introduced. It is stressed that this new definition is completely general, being useful for evaluating the response time, even in complex transitions involving periodic behavior. It is shown that, in some particular situations, this magnitude coincides with previously defined transition times but differs drastically in others. Finally, to illustrate the applicability of this approach, a model of a reaction mediated by an allosteric enzyme is analyzed.

摘要

细胞代谢能够对内部参数和边界条件的变化做出响应。任何系统变量做出这种响应所需的时间,对于理解代谢的进化优化以及生物技术应用都具有重要意义。这项工作的重点是估计当发生扰动或持续变化时,系统的任何可观测变量达到新状态所需的平均时间的大小。为此,基于几何考虑引入了一个新的变量,称为特征时间。需要强调的是,这个新定义是完全通用的,即使在涉及周期性行为的复杂转变中,也有助于评估响应时间。结果表明,在某些特定情况下,这个大小与先前定义的转变时间一致,但在其他情况下则有很大差异。最后,为了说明这种方法的适用性,分析了一个由别构酶介导的反应模型。

相似文献

1
Generalization of the theory of transition times in metabolic pathways: a geometrical approach.
Biophys J. 1999 Jul;77(1):23-36. doi: 10.1016/S0006-3495(99)76869-4.
2
Simple and complex spatiotemporal structures in a glycolytic allosteric enzyme model.
Biophys Chem. 2007 Jan;125(1):112-6. doi: 10.1016/j.bpc.2006.07.004. Epub 2006 Aug 4.
3
Slow ligand-induced transitions in the allosteric phosphofructokinase from Escherichia coli.
J Mol Biol. 1995 Jun 2;249(2):478-92. doi: 10.1006/jmbi.1995.0310.
4
Patterns of spatiotemporal organization in an allosteric enzyme model.
Proc Natl Acad Sci U S A. 1973 Nov;70(11):3255-9. doi: 10.1073/pnas.70.11.3255.
5
Structure and allosteric regulation of eukaryotic 6-phosphofructokinases.
Biol Chem. 2013 Aug;394(8):977-93. doi: 10.1515/hsz-2013-0130.
6
The enzyme activity allosteric regulation model based on the composite nature of catalytic and regulatory sites concept.
J Biomol Struct Dyn. 1999 Feb;16(4):917-29. doi: 10.1080/07391102.1999.10508302.
8
Dissipative structures for an allosteric model. Application to glycolytic oscillations.
Biophys J. 1972 Oct;12(10):1302-15. doi: 10.1016/S0006-3495(72)86164-2.

引用本文的文献

2
Controlling Nuclear NF-κB Dynamics by β-TrCP-Insights from a Computational Model.
Biomedicines. 2019 May 27;7(2):40. doi: 10.3390/biomedicines7020040.
3
Modeling the dynamics of mouse iron body distribution: hepcidin is necessary but not sufficient.
BMC Syst Biol. 2017 May 18;11(1):57. doi: 10.1186/s12918-017-0431-3.
4
Sources of dynamic variability in NF-κB signal transduction: a mechanistic model.
Bioessays. 2015 Apr;37(4):452-62. doi: 10.1002/bies.201400113. Epub 2015 Jan 30.
5
The advantage of arriving first: characteristic times in finite size populations of error-prone replicators.
PLoS One. 2013 Dec 23;8(12):e83142. doi: 10.1371/journal.pone.0083142. eCollection 2013.
6
Time-scale separation--Michaelis and Menten's old idea, still bearing fruit.
FEBS J. 2014 Jan;281(2):473-88. doi: 10.1111/febs.12532. Epub 2013 Oct 17.
7
Control and plasticity of intercellular calcium waves in astrocytes: a modeling approach.
J Neurosci. 2002 Jun 15;22(12):4850-9. doi: 10.1523/JNEUROSCI.22-12-04850.2002.
8
Intercellular Ca2+ wave propagation through gap-junctional Ca2+ diffusion: a theoretical study.
Biophys J. 2001 Jan;80(1):75-87. doi: 10.1016/S0006-3495(01)75996-6.

本文引用的文献

1
Transient time of the pyruvate kinase-lactate dehydrogenase system of rabbit muscle in vitro.
FEBS Lett. 1970 Jul 29;9(2):73-77. doi: 10.1016/0014-5793(70)80316-7.
2
Transient times in linear metabolic pathways under constant affinity constraints.
Biochem J. 1997 Oct 15;327 ( Pt 2)(Pt 2):493-8. doi: 10.1042/bj3270493.
5
The metabolic productivity of the cell factory.
J Theor Biol. 1996 Oct 7;182(3):317-25. doi: 10.1006/jtbi.1996.0170.
6
A generalized theory of the transition time for sequential enzyme reactions.
Biochem J. 1981 Oct 1;199(1):155-61. doi: 10.1042/bj1990155.
7
Coupled enzyme assays: a general expression for the transient.
Biochim Biophys Acta. 1973 Feb 15;293(2):552-8. doi: 10.1016/0005-2744(73)90362-8.
9
DPNH oscillations in a cell-free extract of S. carlsbergensis.
Biochem Biophys Res Commun. 1964 Jun 1;16(2):182-7. doi: 10.1016/0006-291x(64)90358-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验