Suppr超能文献

变构模型的耗散结构。在糖酵解振荡中的应用。

Dissipative structures for an allosteric model. Application to glycolytic oscillations.

作者信息

Goldbeter A, Lefever R

出版信息

Biophys J. 1972 Oct;12(10):1302-15. doi: 10.1016/S0006-3495(72)86164-2.

Abstract

An allosteric model of an open monosubstrate enzyme reaction is analyzed for the case where the enzyme, containing two protomers, is activated by the product. It is shown that this system can lead to instabilities beyond which a new state organized in time or in space (dissipative structure) can be reached. The conditions for both types of instabilities are presented and the occurrence of a temporal structure, consisting of a limit cycle behavior, is determined numerically as a function of the important parameters involved in the system. Sustained oscillations in the product and substrate concentrations are shown to occur for acceptable values of the allosteric and kinetic constants; moreover, they seem to be favored by substrate activation. The model is applied to phosphofructokinase, which is the enzyme chiefly responsible for glycolytic oscillations and which presents the same pattern of regulation as the allosteric enzyme appearing in the model. A qualitative and quantitative agreement is obtained with the experimental observations concerning glycolytic self-oscillations.

摘要

针对一种开放的单底物酶反应的变构模型进行了分析,该模型中含有两个原体的酶被产物激活。结果表明,该系统可能会导致不稳定性,超过此限度后可达到一种在时间或空间上组织起来的新状态(耗散结构)。给出了两种不稳定性的条件,并根据系统中涉及的重要参数,通过数值方法确定了由极限环行为组成的时间结构的出现情况。结果表明,对于变构常数和动力学常数的可接受值,产物和底物浓度会出现持续振荡;此外,底物激活似乎有利于这种振荡。该模型应用于磷酸果糖激酶,它是主要负责糖酵解振荡的酶,并且呈现出与模型中出现的变构酶相同的调节模式。在糖酵解自振荡的实验观察方面,在定性和定量上都与该模型取得了一致。

相似文献

1
Dissipative structures for an allosteric model. Application to glycolytic oscillations.
Biophys J. 1972 Oct;12(10):1302-15. doi: 10.1016/S0006-3495(72)86164-2.
4
A model for glycolytic oscillations based on skeletal muscle phosphofructokinase kinetics.
J Theor Biol. 1995 May 21;174(2):137-48. doi: 10.1006/jtbi.1995.0087.
7
Glycolytic oscillations in a model of a lactic acid bacterium metabolism.
Biophys Chem. 2013 Feb;172:53-60. doi: 10.1016/j.bpc.2012.11.002. Epub 2012 Dec 12.
9
Kinetics of allosteric enzymes.
Annu Rev Biophys Bioeng. 1974;3(0):1-33. doi: 10.1146/annurev.bb.03.060174.000245.

引用本文的文献

1
reconstitution of biological oscillators.
Front Cell Dev Biol. 2025 Aug 12;13:1632969. doi: 10.3389/fcell.2025.1632969. eCollection 2025.
3
Glycolytic oscillations under periodic drivings.
J R Soc Interface. 2024 Feb;21(211):20230588. doi: 10.1098/rsif.2023.0588. Epub 2024 Feb 14.
4
A universal description of stochastic oscillators.
Proc Natl Acad Sci U S A. 2023 Jul 18;120(29):e2303222120. doi: 10.1073/pnas.2303222120. Epub 2023 Jul 11.
5
Dynamic fluctuations in a bacterial metabolic network.
Nat Commun. 2023 Apr 15;14(1):2173. doi: 10.1038/s41467-023-37957-0.
6
Multi-synchronization and other patterns of multi-rhythmicity in oscillatory biological systems.
Interface Focus. 2022 Apr 15;12(3):20210089. doi: 10.1098/rsfs.2021.0089. eCollection 2022 Jun 6.
7
Synchronisation of glycolytic activity in yeast cells.
Curr Genet. 2022 Feb;68(1):69-81. doi: 10.1007/s00294-021-01214-y. Epub 2021 Oct 11.
8
Unbounded solutions of models for glycolysis.
J Math Biol. 2021 Jan 19;82(1-2):1. doi: 10.1007/s00285-021-01560-y.
9
Impact of peroxisome proliferator-activated receptor-α on diabetic cardiomyopathy.
Cardiovasc Diabetol. 2021 Jan 4;20(1):2. doi: 10.1186/s12933-020-01188-0.
10
A Dynamical Paradigm for Molecular Cell Biology.
Trends Cell Biol. 2020 Jul;30(7):504-515. doi: 10.1016/j.tcb.2020.04.002. Epub 2020 Apr 30.

本文引用的文献

1
ON THE NATURE OF ALLOSTERIC TRANSITIONS: A PLAUSIBLE MODEL.
J Mol Biol. 1965 May;12:88-118. doi: 10.1016/s0022-2836(65)80285-6.
2
PHASE RELATIONSHIP OF GLYCOLYTIC INTERMEDIATES IN YEAST CELLS WITH OSCILLATORY METABOLIC CONTROL.
Arch Biochem Biophys. 1965 Mar;109:585-94. doi: 10.1016/0003-9861(65)90404-2.
3
A CHEMICAL MECHANISM FOR OSCILLATION OF GLYCOLYTIC INTERMEDIATES IN YEAST CELLS.
Proc Natl Acad Sci U S A. 1964 Jun;51(6):989-94. doi: 10.1073/pnas.51.6.989.
4
DAMPED SINUSOIDAL OSCILLATIONS OF CYTOPLASMIC REDUCED PYRIDINE NUCLEOTIDE IN YEAST CELLS.
Proc Natl Acad Sci U S A. 1964 Jun;51(6):1244-51. doi: 10.1073/pnas.51.6.1244.
5
Biochemical oscillations in "controlled" systems.
Biophys J. 1967 Sep;7(5):621-5. doi: 10.1016/S0006-3495(67)86611-6.
6
7
Oscillatory behavior in enzymatic control processes.
Adv Enzyme Regul. 1965;3:425-38. doi: 10.1016/0065-2571(65)90067-1.
8
Symmetry breaking instabilities in biological systems.
Nature. 1969 Aug 30;223(5209):913-6. doi: 10.1038/223913a0.
9
Stability of controlled biological systems.
J Theor Biol. 1969 Apr;23(1):23-38. doi: 10.1016/0022-5193(69)90065-4.
10
Chemical instabilities and sustained oscillations.
J Theor Biol. 1971 Feb;30(2):267-84. doi: 10.1016/0022-5193(71)90054-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验