Suppr超能文献

细胞氧分压作为训练有素的人体骨骼肌中线粒体最大耗氧量的一个决定因素。

Cellular PO2 as a determinant of maximal mitochondrial O(2) consumption in trained human skeletal muscle.

作者信息

Richardson R S, Leigh J S, Wagner P D, Noyszewski E A

机构信息

Department of Medicine, University of California San Diego, La Jolla, California 92093, USA.

出版信息

J Appl Physiol (1985). 1999 Jul;87(1):325-31. doi: 10.1152/jappl.1999.87.1.325.

Abstract

Previously, by measuring myoglobin-associated PO(2) (P(Mb)O(2)) during maximal exercise, we have demonstrated that 1) intracellular PO(2) is 10-fold less than calculated mean capillary PO(2) and 2) intracellular PO(2) and maximum O(2) uptake (VO(2 max)) fall proportionately in hypoxia. To further elucidate this relationship, five trained subjects performed maximum knee-extensor exercise under conditions of normoxia (21% O(2)), hypoxia (12% O(2)), and hyperoxia (100% O(2)) in balanced order. Quadriceps O(2) uptake (VO(2)) was calculated from arterial and venous blood O(2) concentrations and thermodilution blood flow measurements. Magnetic resonance spectroscopy was used to determine myoglobin desaturation, and an O(2) half-saturation pressure of 3.2 Torr was used to calculate P(Mb)O(2) from saturation. Skeletal muscle VO(2 max) at 12, 21, and 100% O(2) was 0.86 +/- 0.1, 1.08 +/- 0.2, and 1.28 +/- 0.2 ml. min(-1). ml(-1), respectively. The 100% O(2) values approached twice that previously reported in human skeletal muscle. P(Mb)O(2) values were 2.3 +/- 0.5, 3.0 +/- 0.7, and 4.1 +/- 0.7 Torr while the subjects breathed 12, 21, and 100% O(2), respectively. From 12 to 21% O(2), VO(2) and P(Mb)O(2) were again proportionately related. However, 100% O(2) increased VO(2 max) relatively less than P(Mb)O(2), suggesting an approach to maximal mitochondrial capacity with 100% O(2). These data 1) again demonstrate very low cytoplasmic PO(2) at VO(2 max), 2) are consistent with supply limitation of VO(2 max) of trained skeletal muscle, even in hyperoxia, and 3) reveal a disproportionate increase in intracellular PO(2) in hyperoxia, which may be interpreted as evidence that, in trained skeletal muscle, very high mitochondrial metabolic limits to muscle VO(2) are being approached.

摘要

此前,通过在最大运动期间测量与肌红蛋白相关的氧分压(P(Mb)O(2)),我们已经证明:1)细胞内氧分压比计算出的平均毛细血管氧分压低10倍;2)在低氧状态下,细胞内氧分压和最大摄氧量(VO(2 max))成比例下降。为了进一步阐明这种关系,五名受过训练的受试者在常氧(21% O(2))、低氧(12% O(2))和高氧(100% O(2))条件下按平衡顺序进行最大伸膝运动。股四头肌摄氧量(VO(2))根据动脉血和静脉血的氧浓度以及热稀释血流测量值进行计算。利用磁共振波谱法测定肌红蛋白去饱和情况,并使用3.2 Torr的氧半饱和压力根据饱和度计算P(Mb)O(2)。在12%、21%和100% O(2)条件下,骨骼肌VO(2 max)分别为0.86±0.1、1.08±0.2和1.28±0.2 ml·min(-1)·ml(-1)。100% O(2)时的值接近之前报道的人类骨骼肌值的两倍。受试者分别呼吸12%、21%和100% O(2)时,P(Mb)O(2)值分别为2.3±0.5、3.0±0.7和4.1±0.7 Torr。从12% O(2)到21% O(2),VO(2)和P(Mb)O(2)再次成比例相关。然而,100% O(2)时VO(2 max)的增加相对小于P(Mb)O(2)的增加幅度,这表明在100% O(2)时接近最大线粒体容量。这些数据:1)再次证明在VO(2 max)时细胞质氧分压非常低;2)即使在高氧状态下,也与受过训练的骨骼肌VO(2 max)的供应限制一致;3)揭示了高氧状态下细胞内氧分压的不成比例增加,这可以解释为在受过训练的骨骼肌中,正接近对肌肉VO(2)的非常高的线粒体代谢极限的证据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验