Suppr超能文献

参与核糖体蛋白合成抑制的转录元件。

Transcriptional elements involved in the repression of ribosomal protein synthesis.

作者信息

Li B, Nierras C R, Warner J R

机构信息

Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA.

出版信息

Mol Cell Biol. 1999 Aug;19(8):5393-404. doi: 10.1128/MCB.19.8.5393.

Abstract

The ribosomal proteins (RPs) of Saccharomyces cerevisiae are encoded by 137 genes that are among the most transcriptionally active in the genome. These genes are coordinately regulated: a shift up in temperature leads to a rapid, but temporary, decline in RP mRNA levels. A defect in any part of the secretory pathway leads to greatly reduced ribosome synthesis, including the rapid loss of RP mRNA. Here we demonstrate that the loss of RP mRNA is due to the rapid transcriptional silencing of the RP genes, coupled to the naturally short lifetime of their transcripts. The data suggest further that a global inhibition of polymerase II transcription leads to overestimates of the stability of individual mRNAs. The transcription of most RP genes is activated by two Rap1p binding sites, 250 to 400 bp upstream from the initiation of transcription. Rap1p is both an activator and a silencer of transcription. The swapping of promoters between RPL30 and ACT1 or GAL1 demonstrated that the Rap1p binding sites of RPL30 are sufficient to silence the transcription of ACT1 in response to a defect in the secretory pathway. Sir3p and Sir4p, implicated in the Rap1p-mediated repression of silent mating type genes and of telomere-proximal genes, do not influence such silencing of RP genes. Sir2p, implicated in the silencing both of the silent mating type genes and of genes within the ribosomal DNA locus, does not influence the repression of either RP or rRNA genes. Surprisingly, the 180-bp sequence of RPL30 that lies between the Rap1p sites and the transcription initiation site is also sufficient to silence the Gal4p-driven transcription in response to a defect in the secretory pathway, by a mechanism that requires the silencing region of Rap1p. We conclude that for Rap1p to activate the transcription of an RP gene it must bind to upstream sequences; yet for Rap1p to repress the transcription of an RP gene it need not bind to the gene directly. Thus, the cell has evolved a two-pronged approach to effect the rapid extinction of RP synthesis in response to the stress imposed by a heat shock or by a failure of the secretory pathway. Calculations based on recent transcriptome data and on the half-life of the RP mRNAs suggest that in a rapidly growing cell the transcription of RP mRNAs accounts for nearly 50% of the total transcriptional events initiated by RNA polymerase II. Thus, the sudden silencing of the RP genes must have a dramatic effect on the overall transcriptional economy of the cell.

摘要

酿酒酵母的核糖体蛋白(RPs)由137个基因编码,这些基因是基因组中转录活性最高的基因之一。这些基因受到协同调控:温度升高会导致RP mRNA水平迅速但暂时下降。分泌途径任何部分的缺陷都会导致核糖体合成大幅减少,包括RP mRNA的快速丢失。在此,我们证明RP mRNA的丢失是由于RP基因的快速转录沉默,以及其转录本天然较短的寿命。数据还表明,对聚合酶II转录的全局抑制会导致对单个mRNA稳定性的高估。大多数RP基因的转录由两个Rap1p结合位点激活,位于转录起始点上游250至400 bp处。Rap1p既是转录激活剂又是转录沉默剂。RPL30与ACT1或GAL1之间启动子的交换表明,RPL30的Rap1p结合位点足以响应分泌途径缺陷而沉默ACT1的转录。参与Rap1p介导的沉默交配型基因和端粒近端基因抑制的Sir3p和Sir4p,并不影响RP基因的这种沉默。参与沉默交配型基因和核糖体DNA位点内基因沉默的Sir2p,不影响RP或rRNA基因的抑制。令人惊讶的是,位于Rap1p位点和转录起始位点之间的180 bp的RPL30序列也足以响应分泌途径缺陷而沉默Gal4p驱动的转录,其机制需要Rap1p的沉默区域。我们得出结论,Rap1p要激活RP基因的转录,它必须结合到上游序列;然而,Rap1p要抑制RP基因的转录,它不必直接结合到该基因。因此,细胞进化出了一种双管齐下的方法,以响应热休克或分泌途径故障所施加的应激,实现RP合成的快速终止。基于最近的转录组数据和RP mRNA半衰期的计算表明,在快速生长的细胞中,RP mRNA的转录占RNA聚合酶II启动的总转录事件的近50%。因此,RP基因的突然沉默必定会对细胞的整体转录经济性产生巨大影响。

相似文献

1
Transcriptional elements involved in the repression of ribosomal protein synthesis.
Mol Cell Biol. 1999 Aug;19(8):5393-404. doi: 10.1128/MCB.19.8.5393.
5
Multiple interactions in Sir protein recruitment by Rap1p at silencers and telomeres in yeast.
Mol Cell Biol. 2001 Dec;21(23):8082-94. doi: 10.1128/MCB.21.23.8082-8094.2001.
6
Rap1p is a negative regulator of the RAP1 gene.
Curr Genet. 1996 Jul 31;30(2):93-100. doi: 10.1007/s002940050106.
7
The C terminus of the major yeast telomere binding protein Rap1p enhances telomere formation.
Mol Cell Biol. 1998 Mar;18(3):1284-95. doi: 10.1128/MCB.18.3.1284.
8
Sir proteins, Rif proteins, and Cdc13p bind Saccharomyces telomeres in vivo.
Mol Cell Biol. 1998 Sep;18(9):5600-8. doi: 10.1128/MCB.18.9.5600.
9
The transcription factor Ifh1 is a key regulator of yeast ribosomal protein genes.
Nature. 2004 Dec 23;432(7020):1054-8. doi: 10.1038/nature03175.
10
Gcn4p-mediated transcriptional repression of ribosomal protein genes under amino-acid starvation.
EMBO J. 2011 Mar 2;30(5):859-72. doi: 10.1038/emboj.2010.332. Epub 2010 Dec 24.

引用本文的文献

2
Compensatory gene expression potentially rescues impaired brain development in Kit mutant mice.
Sci Rep. 2023 Mar 13;13(1):4166. doi: 10.1038/s41598-023-30032-0.
3
Eukaryotic Ribosome Biogenesis: The 60S Subunit.
Acta Naturae. 2022 Apr-Jun;14(2):39-49. doi: 10.32607/actanaturae.11541.
4
Regulatory Nucleotide Sequence Signals for Expression of the Genes Encoding Ribosomal Proteins.
Front Genet. 2020 Jun 5;11:501. doi: 10.3389/fgene.2020.00501. eCollection 2020.
5
Shared distal regulatory regions may contribute to the coordinated expression of human ribosomal protein genes.
Genomics. 2020 Jul;112(4):2886-2893. doi: 10.1016/j.ygeno.2020.03.028. Epub 2020 Mar 30.
6
Selection of housekeeping genes and demonstration of RNAi in cotton leafhopper, Amrasca biguttula biguttula (Ishida).
PLoS One. 2018 Jan 12;13(1):e0191116. doi: 10.1371/journal.pone.0191116. eCollection 2018.
7
Analysis of cell cycle parameters during the transition from unhindered growth to ribosomal and translational stress conditions.
PLoS One. 2017 Oct 13;12(10):e0186494. doi: 10.1371/journal.pone.0186494. eCollection 2017.
8
Feedback regulation of ribosome assembly.
Curr Genet. 2018 Apr;64(2):393-404. doi: 10.1007/s00294-017-0764-x. Epub 2017 Oct 11.
10
Zinc Cluster Transcription Factors Alter Virulence in Candida albicans.
Genetics. 2017 Feb;205(2):559-576. doi: 10.1534/genetics.116.195024. Epub 2016 Dec 7.

本文引用的文献

3
The transcriptional program in the response of human fibroblasts to serum.
Science. 1999 Jan 1;283(5398):83-7. doi: 10.1126/science.283.5398.83.
4
Dissecting the regulatory circuitry of a eukaryotic genome.
Cell. 1998 Nov 25;95(5):717-28. doi: 10.1016/s0092-8674(00)81641-4.
5
Cluster analysis and display of genome-wide expression patterns.
Proc Natl Acad Sci U S A. 1998 Dec 8;95(25):14863-8. doi: 10.1073/pnas.95.25.14863.
6
Mechanisms of silencing in Saccharomyces cerevisiae.
Curr Opin Genet Dev. 1998 Apr;8(2):233-9. doi: 10.1016/s0959-437x(98)80146-9.
7
Regulation of ribosome synthesis in yeast.
Yeast. 1997 Dec;13(16):1505-18. doi: 10.1002/(SICI)1097-0061(199712)13:16<1505::AID-YEA229>3.0.CO;2-I.
9
A new nomenclature for the cytoplasmic ribosomal proteins of Saccharomyces cerevisiae.
Nucleic Acids Res. 1997 Dec 15;25(24):4872-5. doi: 10.1093/nar/25.24.4872.
10
Exploring the metabolic and genetic control of gene expression on a genomic scale.
Science. 1997 Oct 24;278(5338):680-6. doi: 10.1126/science.278.5338.680.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验