Walley K R, McDonald T E, Higashimoto Y, Hayashi S
University of British Columbia Pulmonary Research Laboratory, St. Paul's Hospital, Vancouver, British Columbia, Canada.
Am J Respir Crit Care Med. 1999 Aug;160(2):698-704. doi: 10.1164/ajrccm.160.2.9809081.
We tested the hypothesis that NO synthase inhibition alters proinflammatory cytokine expression during acute lung injury in mice. Five-week-old CD-1 mice were pretreated with l-NAME or d-NAME and then received an intratracheal injection of endotoxin (or PBS). TNF-alpha and IL-6 ELISAs and RT-PCR were performed on lung homogenates sampled 6 h later. l-NAME increased TNF-alpha and IL-6 protein and mRNA expression in lungs. Immunostaining demonstrated that TNF-alpha was expressed predominantly by macrophages in the lung. l-NAME did not alter pulmonary macrophage concentration. To better understand the effect of NO synthase inhibition, elicited murine peritoneal macrophages were stimulated in vitro with LPS after addition of l-NAME, d-NAME, nitroprusside, or control. Nuclear proteins were extracted 3 h later and electrophoretic mobility shift and supershift assays were performed using radiolabeled NF-kappaB consensus sequence oligonucleotides. Endotoxin increased NF-kappaB p50/p65 heterodimer binding. Binding was further increased by l-NAME and decreased by nitroprusside. The effect of nitroprusside was not blocked by guanylate cyclase inhibition. We conclude that, in endotoxin-induced acute lung injury, NO synthase inhibition increases proinflammatory cytokine protein and mRNA expression in part because NO decreases the amount of NF-kappaB available for binding to the regulatory region of proinflammatory cytokine genes.