Suppr超能文献

在单个RNA分子中观察到的配体诱导的构象变化。

Ligand-induced conformational changes observed in single RNA molecules.

作者信息

Ha T, Zhuang X, Kim H D, Orr J W, Williamson J R, Chu S

机构信息

Department of Physics, Stanford University, Stanford, CA 94305, USA.

出版信息

Proc Natl Acad Sci U S A. 1999 Aug 3;96(16):9077-82. doi: 10.1073/pnas.96.16.9077.

Abstract

We present the first demonstration that fluorescence resonance energy transfer can be used to track the motion of a single molecule undergoing conformational changes. As a model system, the conformational changes of individual three-helix junction RNA molecules induced by the binding of ribosomal protein S15 or Mg(2+) ions were studied by changes in single-molecule fluorescence. The transition from an open to a folded configuration was monitored by the change of fluorescence resonance energy transfer between two different dye molecules attached to the ends of two helices in the RNA junction. Averaged behavior of RNA molecules closely resembles that of unlabeled molecules in solution determined by other bulk assays, proving that this approach is viable and suggesting new opportunities for studying protein-nucleic acids interactions. Surprisingly, we observed an anomalously broad distribution of RNA conformations at intermediate ion concentrations that may be attributed to foldability differences among RNA molecules. In addition, an experimental scheme was developed where the real-time response of single molecules can be followed under changing environments. As a demonstration, we repeatedly changed Mg(2+) concentration in the buffer while monitoring single RNA molecules and showed that individual RNA molecules can measure the instantaneous Mg(2+) concentration with 20-ms time resolution, making it the world's smallest Mg(2+) meter.

摘要

我们首次证明了荧光共振能量转移可用于追踪经历构象变化的单个分子的运动。作为一个模型系统,通过单分子荧光的变化研究了核糖体蛋白S15或Mg(2+)离子结合诱导的单个三螺旋连接RNA分子的构象变化。通过连接在RNA连接中两个螺旋末端的两个不同染料分子之间荧光共振能量转移的变化,监测从开放构象到折叠构象的转变。RNA分子的平均行为与通过其他大量分析确定的溶液中未标记分子的行为非常相似,证明了这种方法是可行的,并为研究蛋白质 - 核酸相互作用提供了新的机会。令人惊讶的是,我们在中等离子浓度下观察到RNA构象异常广泛的分布,这可能归因于RNA分子之间的可折叠性差异。此外,还开发了一种实验方案,在变化的环境中可以跟踪单个分子的实时响应。作为一个演示,我们在监测单个RNA分子的同时反复改变缓冲液中的Mg(2+)浓度,并表明单个RNA分子可以以20毫秒的时间分辨率测量瞬时Mg(2+)浓度,使其成为世界上最小的Mg(2+)计。

相似文献

5
Dynamics of the RNA hairpin GNRA tetraloop.RNA发夹结构GNRA四环的动力学
Biochemistry. 2000 Apr 18;39(15):4500-7. doi: 10.1021/bi992297n.
9
A trifunctional, triangular RNA-protein complex.一种三功能的三角形RNA-蛋白质复合物。
FEBS Lett. 2015 Aug 19;589(18):2424-8. doi: 10.1016/j.febslet.2015.07.005. Epub 2015 Jul 13.

引用本文的文献

1
Technologies for investigating single-molecule chemical reactions.用于研究单分子化学反应的技术。
Natl Sci Rev. 2024 Jul 9;11(8):nwae236. doi: 10.1093/nsr/nwae236. eCollection 2024 Aug.
4
A roadmap for rRNA folding and assembly during transcription.rRNA 折叠和转录组装的路线图。
Trends Biochem Sci. 2021 Nov;46(11):889-901. doi: 10.1016/j.tibs.2021.05.009. Epub 2021 Jun 24.
8
Transient Protein-RNA Interactions Guide Nascent Ribosomal RNA Folding.瞬时蛋白-RNA 相互作用指导新生核糖体 RNA 折叠。
Cell. 2019 Nov 27;179(6):1357-1369.e16. doi: 10.1016/j.cell.2019.10.035. Epub 2019 Nov 21.

本文引用的文献

1
Optical studies of single molecules at room temperature.室温下单分子的光学研究。
Annu Rev Phys Chem. 1998;49:441-80. doi: 10.1146/annurev.physchem.49.1.441.
3
Fluorescence spectroscopy of single biomolecules.单生物分子的荧光光谱学。
Science. 1999 Mar 12;283(5408):1676-83. doi: 10.1126/science.283.5408.1676.
4
Illuminating single molecules in condensed matter.凝聚态物质中的单分子发光
Science. 1999 Mar 12;283(5408):1670-6. doi: 10.1126/science.283.5408.1670.
5
Single Molecule Dynamics Studied by Polarization Modulation.通过偏振调制研究单分子动力学。
Phys Rev Lett. 1996 Nov 4;77(19):3979-3982. doi: 10.1103/PhysRevLett.77.3979.
7
Single-molecule enzymatic dynamics.单分子酶动力学
Science. 1998 Dec 4;282(5395):1877-82. doi: 10.1126/science.282.5395.1877.
8
Response of flexible polymers to a sudden elongational flow.柔性聚合物对突然的拉伸流动的响应。
Science. 1998 Aug 28;281(5381):1335-40. doi: 10.1126/science.281.5381.1335.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验