Suppr超能文献

硫链丝菌素抑制核糖体上延伸因子G的周转,但不抑制其GTP酶活性。

Thiostrepton inhibits the turnover but not the GTPase of elongation factor G on the ribosome.

作者信息

Rodnina M V, Savelsbergh A, Matassova N B, Katunin V I, Semenkov Y P, Wintermeyer W

机构信息

Institute of Molecular Biology, University of Witten/Herdecke, D-58448 Witten, Germany.

出版信息

Proc Natl Acad Sci U S A. 1999 Aug 17;96(17):9586-90. doi: 10.1073/pnas.96.17.9586.

Abstract

The region around position 1067 in domain II of 23S rRNA frequently is referred to as the GTPase center of the ribosome. The notion is based on the observation that the binding of the antibiotic thiostrepton to this region inhibited GTP hydrolysis by elongation factor G (EF-G) on the ribosome at the conditions of multiple turnover. In the present work, we have reanalyzed the mechanism of action of thiostrepton. Results obtained by biochemical and fast kinetic techniques show that thiostrepton binding to the ribosome does not interfere with factor binding or with single-round GTP hydrolysis. Rather, the antibiotic inhibits the function of EF-G in subsequent steps, including release of inorganic phosphate from EF-G after GTP hydrolysis, tRNA translocation, and the dissociation of the factor from the ribosome, thereby inhibiting the turnover reaction. Structurally, thiostrepton interferes with EF-G footprints in the alpha-sarcin stem loop (A2660, A2662) located in domain VI of 23S rRNA. The results indicate that thiostrepton inhibits a structural transition of the 1067 region of 23S rRNA that is important for functions of EF-G after GTP hydrolysis.

摘要

23S rRNA的结构域II中位置1067周围的区域常被称为核糖体的GTP酶中心。这一概念基于这样的观察结果:在多次周转的条件下,抗生素硫链丝菌素与该区域的结合会抑制核糖体上延伸因子G(EF-G)的GTP水解。在本研究中,我们重新分析了硫链丝菌素的作用机制。通过生化和快速动力学技术获得的结果表明,硫链丝菌素与核糖体的结合不会干扰因子结合或单轮GTP水解。相反,这种抗生素在后续步骤中抑制EF-G的功能,包括GTP水解后无机磷酸从EF-G的释放、tRNA易位以及因子从核糖体的解离,从而抑制周转反应。在结构上,硫链丝菌素干扰了位于23S rRNA结构域VI中的α-肌动蛋白茎环(A2660、A2662)中的EF-G足迹。结果表明,硫链丝菌素抑制了23S rRNA 1067区域的结构转变,而这种转变对GTP水解后EF-G的功能很重要。

相似文献

引用本文的文献

6
Bacteriocins: Potential for Human Health.细菌素:对人类健康的潜在影响。
Oxid Med Cell Longev. 2021 Apr 10;2021:5518825. doi: 10.1155/2021/5518825. eCollection 2021.
10
Translation-Targeting RiPPs and Where to Find Them.靶向翻译后修饰的核糖体合成肽及其发现途径
Front Genet. 2020 Mar 31;11:226. doi: 10.3389/fgene.2020.00226. eCollection 2020.

本文引用的文献

4
Molecular movement inside the translational engine.翻译引擎内部的分子运动。
Cell. 1998 Feb 6;92(3):337-49. doi: 10.1016/s0092-8674(00)80927-7.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验