Gimsa J, Wachner D
Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany. Jan=
Biophys J. 1999 Sep;77(3):1316-26. doi: 10.1016/S0006-3495(99)76981-X.
We present a new model for a variety of electric polarization effects on oblate and prolate homogeneous and single-shell spheroids. For homogeneous spheroids the model is identical to the Laplace model. For single-shell spheres of cell-like geometry the calculated difference of the induced dipole moments is in the thousandths range. To solve Laplace's equation for nonspherical single-shell objects it is necessary to assume a confocal shell, which results in different cell membrane properties in the pole and equator regions, respectively. Our alternative model addresses this drawback. It assumes that the disturbance of the external field due to polarization may project into the medium to a characteristic distance, the influential radius. This parameter is related to the axis ratio of the spheroid over the depolarizing factors and allows us to determine the geometry for a finite resistor-capacitor model. From this model the potential at the spheroid's surface is obtained and, consequently, the local field inside a homogeneous spheroid is determined. In the single-shell case, this is the effective local field of an equivalent homogeneous spheroid. Finally, integration over the volume yields the frequency-dependent induced dipole moment. The resistor-capacitor approach allowed us to find simple equations for the critical and characteristic frequencies, force plateaus and peak heights of deformation, dielectrophoresis and electrorotation for homogeneous and single-shell spheroids, and a more generalized equation for the induced transmembrane potential of spheroidal cells.
我们提出了一个新模型,用于描述各种电极化效应在扁球形和长球形的均匀及单壳球体上的情况。对于均匀球体,该模型与拉普拉斯模型相同。对于具有细胞状几何形状的单壳球体,计算得到的感应偶极矩差异在千分之一范围内。为了解决非球形单壳物体的拉普拉斯方程,有必要假设一个共焦壳,这导致极区和赤道区的细胞膜特性不同。我们的替代模型解决了这一缺点。它假设由于极化引起的外部场扰动可能会投射到介质中一个特征距离,即影响半径。这个参数与球体的轴比和去极化因子有关,使我们能够确定有限电阻 - 电容模型的几何形状。从这个模型可以得到球体表面的电势,进而确定均匀球体内的局部场。在单壳情况下,这是等效均匀球体的有效局部场。最后,对体积进行积分得到频率相关的感应偶极矩。电阻 - 电容方法使我们能够找到关于均匀和单壳球体的临界频率、特征频率、力平台以及变形、介电电泳和旋转电泳的峰值高度的简单方程,以及关于球形细胞感应跨膜电势的更通用方程。