Petersson K M, Nichols T E, Poline J B, Holmes A P
Department of Clinical Neuroscience, Karolinska Institute, Karolinska Hospital, Stockholm, Sweden.
Philos Trans R Soc Lond B Biol Sci. 1999 Jul 29;354(1387):1239-60. doi: 10.1098/rstb.1999.0477.
Functional neuroimaging (FNI) provides experimental access to the intact living brain making it possible to study higher cognitive functions in humans. In this review and in a companion paper in this issue, we discuss some common methods used to analyse FNI data. The emphasis in both papers is on assumptions and limitations of the methods reviewed. There are several methods available to analyse FNI data indicating that none is optimal for all purposes. In order to make optimal use of the methods available it is important to know the limits of applicability. For the interpretation of FNI results it is also important to take into account the assumptions, approximations and inherent limitations of the methods used. This paper gives a brief overview over some non-inferential descriptive methods and common statistical models used in FNI. Issues relating to the complex problem of model selection are discussed. In general, proper model selection is a necessary prerequisite for the validity of the subsequent statistical inference. The non-inferential section describes methods that, combined with inspection of parameter estimates and other simple measures, can aid in the process of model selection and verification of assumptions. The section on statistical models covers approaches to global normalization and some aspects of univariate, multivariate, and Bayesian models. Finally, approaches to functional connectivity and effective connectivity are discussed. In the companion paper we review issues related to signal detection and statistical inference.
功能神经影像学(FNI)为研究完整的活体大脑提供了实验途径,使得研究人类的高级认知功能成为可能。在本综述以及本期的一篇配套论文中,我们讨论了一些用于分析FNI数据的常用方法。两篇论文的重点均在于所综述方法的假设和局限性。有多种方法可用于分析FNI数据,这表明没有一种方法适用于所有目的。为了最佳地利用现有方法,了解其适用范围很重要。对于FNI结果的解释,考虑所用方法的假设、近似值和固有局限性也很重要。本文简要概述了FNI中使用的一些非推断性描述方法和常见统计模型。讨论了与复杂的模型选择问题相关的议题。一般来说,正确的模型选择是后续统计推断有效性的必要前提。非推断部分描述了一些方法,这些方法与参数估计检查及其他简单度量相结合,可有助于模型选择过程和假设验证。统计模型部分涵盖了全局归一化方法以及单变量、多变量和贝叶斯模型的一些方面。最后,讨论了功能连接和有效连接的方法。在配套论文中,我们综述了与信号检测和统计推断相关的议题。