Wachter K W
Departments of Demography and Statistics, University of California, 2232 Piedmont Avenue, Berkeley, CA 94720-2120, USA.
Proc Natl Acad Sci U S A. 1999 Aug 31;96(18):10544-7. doi: 10.1073/pnas.96.18.10544.
Plateaus in the age pattern of hazard functions at extreme ages have been discovered in large populations of medflies, Drosophila, nematodes, and people. Mueller and Rose [(1996) Proc. Natl. Acad. Sci. USA 93, 15249-15253] have proposed several age-structured demographic models to represent effects of mutation accumulation and antagonistic pleiotropy on randomly evolving schedules of demographic rates. They assert that "evolutionary theory [as embodied in their models] predicts late-life mortality plateaus." This paper defines a class of Markovian models that includes those of Mueller and Rose and obtains a characterization of the possible limiting states. For the basic model, the result implies that schedules with late-life mortality plateaus above a minimal threshold are not limiting states. The models fail, but not for reasons previously conjectured. Transient states, visited early by the process, do display mortality plateaus. Other models from this class may have a role to play in reconciling observed plateaus with evolutionary theory.
在大量的地中海实蝇、果蝇、线虫和人类群体中,已经发现了极端年龄下风险函数年龄模式中的平稳期。穆勒和罗斯[(1996年)《美国国家科学院院刊》93卷,第15249 - 15253页]提出了几种年龄结构的人口统计学模型,以表示突变积累和拮抗多效性对随机演变的人口统计率时间表的影响。他们断言,“[他们模型中所体现的]进化理论预测晚年死亡率平稳期。”本文定义了一类马尔可夫模型,其中包括穆勒和罗斯的模型,并获得了可能的极限状态的特征描述。对于基本模型,结果表明,晚年死亡率平稳期高于最小阈值的时间表不是极限状态。这些模型是失败的,但并非出于先前推测的原因。该过程早期访问的瞬态确实显示出死亡率平稳期。这类中的其他模型可能在使观察到的平稳期与进化理论相协调方面发挥作用。