Suppr超能文献

rpoS基因缺失对大肠杆菌生物膜的影响。

Impact of rpoS deletion on Escherichia coli biofilms.

作者信息

Adams J L, McLean R J

机构信息

Department of Biology, Southwest Texas State University, San Marcos, Texas 78666-4616, USA.

出版信息

Appl Environ Microbiol. 1999 Sep;65(9):4285-7. doi: 10.1128/AEM.65.9.4285-4287.1999.

Abstract

Slow growth has been hypothesized to be an essential aspect of bacterial physiology within biofilms. In order to test this hypothesis, we employed two strains of Escherichia coli, ZK126 (DeltalacZ rpoS(+)) and its isogenic DeltarpoS derivative, ZK1000. These strains were grown at two rates (0.033 and 0.0083 h(-1)) in a glucose-limited chemostat which was coupled either to a modified Robbins device containing plugs of silicone rubber urinary catheter material or to a glass flow cell. The presence or absence of rpoS did not significantly affect planktonic growth of E. coli. In contrast, biofilm cell density in the rpoS mutant strain (ZK1000), as measured by determining the number of CFU per square centimeter, was reduced by 50% (P < 0.05). Deletion of rpoS caused differences in biofilm cell arrangement, as seen by scanning confocal laser microscopy. In reporter gene experiments, similar levels of rpoS expression were seen in chemostat-grown planktonic and biofilm populations at a growth rate of 0.033 h(-1). Overall, these studies suggest that rpoS is important for biofilm physiology.

摘要

生长缓慢被认为是生物膜内细菌生理学的一个重要方面。为了验证这一假设,我们使用了两株大肠杆菌,ZK126(DeltalacZ rpoS(+))及其同基因的DeltarpoS衍生物ZK1000。这些菌株在葡萄糖限制的恒化器中以两种速率(0.033和0.0083 h(-1))生长,该恒化器与一个装有硅橡胶导尿管材料塞子的改良Robbins装置或一个玻璃流动池相连。rpoS的存在与否对大肠杆菌的浮游生长没有显著影响。相比之下,通过测定每平方厘米的CFU数量来衡量,rpoS突变株(ZK1000)中的生物膜细胞密度降低了50%(P < 0.05)。通过扫描共聚焦激光显微镜观察,rpoS的缺失导致生物膜细胞排列的差异。在报告基因实验中,在生长速率为0.033 h(-1)的恒化器培养的浮游和生物膜群体中观察到相似水平的rpoS表达。总体而言,这些研究表明rpoS对生物膜生理学很重要。

相似文献

1
Impact of rpoS deletion on Escherichia coli biofilms.
Appl Environ Microbiol. 1999 Sep;65(9):4285-7. doi: 10.1128/AEM.65.9.4285-4287.1999.
2
Impact of rpoS deletion on the proteome of Escherichia coli grown planktonically and as biofilm.
J Proteome Res. 2008 Nov;7(11):4659-69. doi: 10.1021/pr8001723. Epub 2008 Oct 1.
3
Role of rpoS in Escherichia coli O157:H7 strain H32 biofilm development and survival.
Appl Environ Microbiol. 2012 Dec;78(23):8331-9. doi: 10.1128/AEM.02149-12. Epub 2012 Sep 21.
4
A mutation in rpoS enhances biofilm formation in Escherichia coli during exponential phase of growth.
FEMS Microbiol Lett. 2002 May 21;211(1):105-10. doi: 10.1111/j.1574-6968.2002.tb11210.x.
5
Significance of rpoS during maturation of Escherichia coli biofilms.
Biotechnol Bioeng. 2008 Apr 15;99(6):1462-71. doi: 10.1002/bit.21695.
8
Role of RpoS and AlgT in Pseudomonas aeruginosa biofilm resistance to hydrogen peroxide and monochloramine.
J Appl Microbiol. 2000 Mar;88(3):546-53. doi: 10.1046/j.1365-2672.2000.00995.x.
9
10
Peroxide resistance in Escherichia coli serotype O157 : H7 biofilms is regulated by both RpoS-dependent and -independent mechanisms.
Microbiology (Reading). 2012 Sep;158(Pt 9):2225-2234. doi: 10.1099/mic.0.059535-0. Epub 2012 Jun 14.

引用本文的文献

1
2
Recent Contributions of Proteomics to Our Understanding of Reversible N-Lysine Acylation in Bacteria.
J Proteome Res. 2024 Aug 2;23(8):2733-2749. doi: 10.1021/acs.jproteome.3c00912. Epub 2024 Mar 5.
3
Pseudomonas aeruginosa biofilm exopolysaccharides: assembly, function, and degradation.
FEMS Microbiol Rev. 2023 Nov 1;47(6). doi: 10.1093/femsre/fuad060.
4
Comparison of the Efficiency of Selected Disinfectants against Planktonic and Biofilm Populations of and .
Microorganisms. 2023 Jun 15;11(6):1593. doi: 10.3390/microorganisms11061593.
5
Biofilm and wound healing: from bench to bedside.
Eur J Med Res. 2023 Apr 25;28(1):157. doi: 10.1186/s40001-023-01121-7.
6
8
A regulatory network involving Rpo, Gac and Rsm for nitrogen-fixing biofilm formation by Pseudomonas stutzeri.
NPJ Biofilms Microbiomes. 2021 Jul 1;7(1):54. doi: 10.1038/s41522-021-00230-7.
9
Tannic and gallic acids alter redox-parameters of the medium and modulate biofilm formation.
AIMS Microbiol. 2019 Dec 27;5(4):379-392. doi: 10.3934/microbiol.2019.4.379. eCollection 2019.
10
Structural basis for inhibition of a response regulator of σ stability by a ClpXP antiadaptor.
Genes Dev. 2019 Jun 1;33(11-12):718-732. doi: 10.1101/gad.320168.118. Epub 2019 Apr 11.

本文引用的文献

2
Regulation in the rpoS regulon of Escherichia coli.
Can J Microbiol. 1998 Aug;44(8):707-17. doi: 10.1139/cjm-44-8-707.
3
The involvement of cell-to-cell signals in the development of a bacterial biofilm.
Science. 1998 Apr 10;280(5361):295-8. doi: 10.1126/science.280.5361.295.
4
Biofilm susceptibility to antimicrobials.
Adv Dent Res. 1997 Apr;11(1):160-7. doi: 10.1177/08959374970110010701.
8
Use of rRNA fluorescence in situ hybridization for measuring the activity of single cells in young and established biofilms.
Appl Environ Microbiol. 1993 May;59(5):1354-60. doi: 10.1128/aem.59.5.1354-1360.1993.
10
Tobramycin resistance of Pseudomonas aeruginosa cells growing as a biofilm on urinary catheter material.
Antimicrob Agents Chemother. 1985 Apr;27(4):619-24. doi: 10.1128/AAC.27.4.619.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验