Bailly E, Reed S I
Institut Curie-UMR 144, 75248 Paris Cedex 05, France.
Mol Cell Biol. 1999 Oct;19(10):6872-90. doi: 10.1128/MCB.19.10.6872.
By selectively eliminating ubiquitin-conjugated proteins, the 26S proteasome plays a pivotal role in a large variety of cellular regulatory processes, particularly in the control of cell cycle transitions. Access of ubiquitinated substrates to the inner catalytic chamber within the 20S core particle is mediated by the 19S regulatory particle (RP), whose subunit composition in budding yeast has been recently elucidated. In this study, we have investigated the cell cycle defects resulting from conditional inactivation of one of these RP components, the essential non-ATPase Rpn3/Sun2 subunit. Using temperature-sensitive mutant alleles, we show that rpn3 mutations do not prevent the G(1)/S transition but cause a metaphase arrest, indicating that the essential Rpn3 function is limiting for mitosis. rpn3 mutants appear severely compromised in the ubiquitin-dependent proteolysis of several physiologically important proteasome substrates. Thus, RPN3 function is required for the degradation of the G(1)-phase cyclin Cln2 targeted by SCF; the S-phase cyclin Clb5, whose ubiquitination is likely to involve a combination of E3 (ubiquitin protein ligase) enzymes; and anaphase-promoting complex targets, such as the B-type cyclin Clb2 and the anaphase inhibitor Pds1. Our results indicate that the Pds1 degradation defect of the rpn3 mutants most likely accounts for the metaphase arrest phenotype observed. Surprisingly, but consistent with the lack of a G(1) arrest phenotype in thermosensitive rpn3 strains, the Cdk inhibitor Sic1 exhibits a short half-life regardless of the RPN3 genotype. In striking contrast, Sic1 turnover is severely impaired by a temperature-sensitive mutation in RPN12/NIN1, encoding another essential RP subunit. While other interpretations are possible, these data strongly argue for the requirement of distinct RP subunits for efficient proteolysis of specific cell cycle regulators. The potential implications of these data are discussed in the context of possible Rpn3 function in multiubiquitin-protein conjugate recognition by the 19S proteasomal regulatory particle.
通过选择性地清除泛素缀合蛋白,26S蛋白酶体在多种细胞调节过程中发挥关键作用,尤其是在细胞周期转换的控制中。泛素化底物进入20S核心颗粒内的内部催化腔是由19S调节颗粒(RP)介导的,其在芽殖酵母中的亚基组成最近已被阐明。在本研究中,我们研究了这些RP组件之一、必需的非ATP酶Rpn3/Sun2亚基的条件性失活所导致的细胞周期缺陷。使用温度敏感突变等位基因,我们表明rpn3突变不会阻止G(1)/S转换,但会导致中期停滞,表明必需的Rpn3功能对有丝分裂具有限制作用。rpn3突变体在几种生理上重要的蛋白酶体底物的泛素依赖性蛋白水解中似乎严重受损。因此,RPN3功能是SCF靶向的G(1)期细胞周期蛋白Cln2降解所必需的;S期细胞周期蛋白Clb5,其泛素化可能涉及E3(泛素蛋白连接酶)酶的组合;以及后期促进复合物的靶标,如B型细胞周期蛋白Clb2和后期抑制剂Pds1。我们的结果表明,rpn3突变体的Pds1降解缺陷很可能解释了观察到的中期停滞表型。令人惊讶的是,但与热敏感rpn3菌株中缺乏G(1)停滞表型一致,Cdk抑制剂Sic1的半衰期较短,与RPN3基因型无关。与之形成鲜明对比的是,RPN12/NIN1(编码另一个必需的RP亚基)中的温度敏感突变严重损害了Sic1的周转。虽然可能有其他解释,但这些数据有力地证明了不同的RP亚基对于特定细胞周期调节因子的有效蛋白水解是必需的。在19S蛋白酶体调节颗粒对多泛素-蛋白缀合物识别中可能的Rpn3功能的背景下,讨论了这些数据的潜在意义。