Suppr超能文献

细菌鞭毛马达

The bacterial flagella motor.

作者信息

Berry R M, Armitage J P

机构信息

Randall Institute, King's College London, UK.

出版信息

Adv Microb Physiol. 1999;41:291-337. doi: 10.1016/s0065-2911(08)60169-1.

Abstract

The bacterial flagellum is probably the most complex organelle found in bacteria. Although the ribosome may be made of slightly more subunits, the bacterial flagellum is a more organized and complex structure. The limited number of flagella must be targeted to the correct place on the cell membrane and a structure with cytoplasmic, cytoplasmic membrane, outer membrane and extracellular components must be assembled. The process of controlled transcription and assembly is still not fully understood. Once assembled, the motor complex in the cytoplasmic membrane rotates, driven by the transmembrane ion gradient, at speeds that can reach many 100 Hz, driving the bacterial cell at several body lengths a second. This coupling of an electrochemical gradient to mechanical rotational work is another fascinating feature of the bacterial motor. A significant percentage of a bacterium's energy may be used in synthesizing the complex structure of the flagellum and driving its rotation. Although patterns of swimming may be random in uniform environments, in the natural environment, where cells are confronted with gradients of metabolites and toxins, motility is used to move bacteria towards their optimum environment for growth and survival. A sensory system therefore controls the switching frequency of the rotating flagellum. This review deals primarily with the structure and operation of the bacterial flagellum. There has been a great deal of research in this area over the past 20 years and only some of this has been included. We apologize in advance if certain areas are covered rather thinly, but hope that interested readers will look at the excellent detailed reviews on those areas cited at those points.

摘要

细菌鞭毛可能是细菌中发现的最复杂的细胞器。尽管核糖体可能由稍多一些的亚基组成,但细菌鞭毛是一种更有组织且更复杂的结构。数量有限的鞭毛必须定位到细胞膜上的正确位置,并且必须组装一个具有细胞质、细胞质膜、外膜和细胞外成分的结构。受控转录和组装的过程仍未完全了解。一旦组装完成,细胞质膜中的马达复合体在跨膜离子梯度的驱动下旋转,速度可达数百赫兹,每秒推动细菌细胞移动几个体长。这种电化学梯度与机械旋转功的耦合是细菌马达的另一个迷人特征。细菌相当一部分能量可能用于合成鞭毛的复杂结构并驱动其旋转。尽管在均匀环境中游泳模式可能是随机的,但在自然环境中,细胞面临代谢物和毒素的梯度,运动性被用来将细菌朝着其生长和生存的最佳环境移动。因此,一个传感系统控制着旋转鞭毛的切换频率。本综述主要探讨细菌鞭毛的结构和运作。在过去20年里,该领域有大量研究,这里仅涵盖了其中一部分。如果某些领域的阐述较为简略,我们在此预先致歉,但希望感兴趣的读者查阅文中引用的关于这些领域的精彩详细综述。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验