Berry R M
Clarendon Laboratory, Oxford, United Kingdom.
Biophys J. 1993 Apr;64(4):961-73. doi: 10.1016/S0006-3495(93)81462-0.
A model is presented for the rotary motor that drives bacterial flagella, using the electrochemical gradient of protons across the cytoplasmic membrane. The model unifies several concepts present in previous models. Torque is generated by proton-conducting particles around the perimeter of the rotor at the base of the flagellum. Protons in channels formed by these particles interact electrostatically with tilted lines of charges on the rotor, providing "loose coupling" between proton flux and rotation of the flagellum. Computer simulations of the model correctly predict the experimentally observed dynamic properties of the motor. Unlike previous models, the motor presented here may rotate either way for a given direction of the protonmotive force. The direction of rotation only depends on the level of occupancy of the proton channels. This suggests a novel and simple mechanism for the switching between clockwise and counterclockwise rotation that is the basis of bacterial chemotaxis.
本文提出了一种利用质子跨细胞质膜的电化学梯度驱动细菌鞭毛的旋转马达模型。该模型整合了先前模型中的几个概念。扭矩由鞭毛基部转子周边的质子传导颗粒产生。这些颗粒形成的通道中的质子与转子上倾斜的电荷线发生静电相互作用,在质子通量和鞭毛旋转之间提供“松散耦合”。该模型的计算机模拟正确地预测了实验观察到的马达动态特性。与先前的模型不同,这里提出的马达在给定质子动力方向下可以向任何一个方向旋转。旋转方向仅取决于质子通道的占据水平。这表明了一种新颖且简单的机制,用于顺时针和逆时针旋转之间的切换,这是细菌趋化性的基础。