Suppr超能文献

FUS(TLS)的两个N端结构域赋予FUS(TLS)-ERG白血病融合蛋白的双重转化活性。

Dual transforming activities of the FUS (TLS)-ERG leukemia fusion protein conferred by two N-terminal domains of FUS (TLS).

作者信息

Ichikawa H, Shimizu K, Katsu R, Ohki M

机构信息

Radiobiology Division, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045, Japan.

出版信息

Mol Cell Biol. 1999 Nov;19(11):7639-50. doi: 10.1128/MCB.19.11.7639.

Abstract

The FUS (TLS)-ERG chimeric protein associated with t(16;21)(p11;q22) acute myeloid leukemia is structurally similar to the Ewing's sarcoma chimeric transcription factor EWS-ERG. We found that both FUS-ERG and EWS-ERG could induce anchorage-independent proliferation of the mouse fibroblast cell line NIH 3T3. However, only FUS-ERG was able to inhibit the differentiation into neutrophils of a mouse myeloid precursor cell line L-G and induce its granulocyte colony-stimulating factor-dependent growth. We constructed several deletion mutants of FUS-ERG lacking a part of the N-terminal FUS region. A deletion mutant lacking the region between amino acids 1 and 173 (exons 1 to 5) lost the NIH 3T3-transforming activity but retained the L-G-transforming activity. On the other hand, a mutant lacking the region between amino acids 174 and 265 (exons 6 and 7) lost the L-G-transforming activity but retained the NIH 3T3-transforming activity. These results indicate that the N-terminal region of FUS contains two independent functional domains required for the NIH 3T3 and L-G transformation, which we named TR1 and TR2, respectively. Although EWS intrinsically possessed the TR2 domain, the EWS-ERG construct employed lacked the EWS sequence containing this domain. Since the TR2 domain is always found in chimeric proteins identified from t(16;21) leukemia patients but not in chimeric proteins from Ewing's sarcoma patients, it seems that the TR2 function is required only for the leukemogenic potential. In addition, we identified three cellular genes whose expression was altered by ectopic expression of FUS-ERG and found that these are regulated in either a TR1-dependent or a TR2-dependent manner. These results suggest that FUS-ERG may activate two independent oncogenic pathways during the leukemogenic process by modulating the expression of two different groups of genes simultaneously.

摘要

与t(16;21)(p11;q22)急性髓系白血病相关的FUS(TLS)-ERG嵌合蛋白在结构上与尤因肉瘤嵌合转录因子EWS-ERG相似。我们发现FUS-ERG和EWS-ERG都能诱导小鼠成纤维细胞系NIH 3T3的锚定非依赖性增殖。然而,只有FUS-ERG能够抑制小鼠髓系前体细胞系L-G向中性粒细胞的分化,并诱导其依赖粒细胞集落刺激因子的生长。我们构建了几个缺失FUS N端部分区域的FUS-ERG缺失突变体。缺失氨基酸1至173(外显子1至5)之间区域的缺失突变体失去了NIH 3T3转化活性,但保留了L-G转化活性。另一方面,缺失氨基酸174至265(外显子6和7)之间区域的突变体失去了L-G转化活性,但保留了NIH 3T3转化活性。这些结果表明,FUS的N端区域包含NIH 3T3和L-G转化所需的两个独立功能域,我们分别将其命名为TR1和TR2。尽管EWS本身具有TR2结构域,但所使用的EWS-ERG构建体缺少包含该结构域的EWS序列。由于TR2结构域总是存在于从t(16;21)白血病患者中鉴定出的嵌合蛋白中,而不存在于尤因肉瘤患者的嵌合蛋白中,因此似乎TR2功能仅对白血病发生潜能是必需的。此外,我们鉴定了三个细胞基因,其表达因FUS-ERG的异位表达而改变,并发现它们以TR1依赖性或TR2依赖性方式受到调控。这些结果表明,FUS-ERG可能在白血病发生过程中通过同时调节两组不同基因的表达来激活两条独立的致癌途径。

相似文献

4
Fusion of the FUS gene with ERG in acute myeloid leukemia with t(16;21)(p11;q22).
Genes Chromosomes Cancer. 1994 Dec;11(4):256-62. doi: 10.1002/gcc.2870110408.
7
The oncogenic TLS-ERG fusion protein exerts different effects in hematopoietic cells and fibroblasts.
Mol Cell Biol. 2005 Jul;25(14):6235-46. doi: 10.1128/MCB.25.14.6235-6246.2005.
8
FUS/ERG gene fusions in Ewing's tumors.
Cancer Res. 2003 Aug 1;63(15):4568-76.
10
TLS-ERG leukemia fusion protein inhibits RNA splicing mediated by serine-arginine proteins.
Mol Cell Biol. 2000 May;20(10):3345-54. doi: 10.1128/MCB.20.10.3345-3354.2000.

引用本文的文献

1
Phase separation of low-complexity domains in cellular function and disease.
Exp Mol Med. 2022 Sep;54(9):1412-1422. doi: 10.1038/s12276-022-00857-2. Epub 2022 Sep 29.
2
Redox-mediated regulation of low complexity domain self-association.
Curr Opin Genet Dev. 2021 Apr;67:111-118. doi: 10.1016/j.gde.2020.12.006. Epub 2021 Jan 14.
3
Prognostic impact of t(16;21)(p11;q22) and t(16;21)(q24;q22) in pediatric AML: a retrospective study by the I-BFM Study Group.
Blood. 2018 Oct 11;132(15):1584-1592. doi: 10.1182/blood-2018-05-849059. Epub 2018 Aug 27.
4
Intragenic ERG Deletions Do Not Explain the Biology of ERG-Related Acute Lymphoblastic Leukemia.
PLoS One. 2016 Aug 5;11(8):e0160385. doi: 10.1371/journal.pone.0160385. eCollection 2016.
5
Biochemical Properties and Biological Functions of FET Proteins.
Annu Rev Biochem. 2015;84:355-79. doi: 10.1146/annurev-biochem-060614-034325. Epub 2014 Dec 8.
6
Phosphorylation-regulated binding of RNA polymerase II to fibrous polymers of low-complexity domains.
Cell. 2013 Nov 21;155(5):1049-1060. doi: 10.1016/j.cell.2013.10.033.
7
Cryptic FUS-ERG fusion identified by RNA-sequencing in childhood acute myeloid leukemia.
Oncol Rep. 2013 Dec;30(6):2587-92. doi: 10.3892/or.2013.2751. Epub 2013 Sep 25.
8
ERG deregulation induces PIM1 over-expression and aneuploidy in prostate epithelial cells.
PLoS One. 2011;6(11):e28162. doi: 10.1371/journal.pone.0028162. Epub 2011 Nov 30.
9
Research advances in amyotrophic lateral sclerosis, 2009 to 2010.
Curr Neurol Neurosci Rep. 2011 Feb;11(1):67-77. doi: 10.1007/s11910-010-0160-0.
10
The oncogenic TLS-ERG fusion protein exerts different effects in hematopoietic cells and fibroblasts.
Mol Cell Biol. 2005 Jul;25(14):6235-46. doi: 10.1128/MCB.25.14.6235-6246.2005.

本文引用的文献

1
Genomic structure of the human RBP56/hTAFII68 and FUS/TLS genes.
Gene. 1998 Oct 23;221(2):191-8. doi: 10.1016/s0378-1119(98)00463-6.
3
Retroviral transduction of TLS-ERG initiates a leukemogenic program in normal human hematopoietic cells.
Proc Natl Acad Sci U S A. 1998 Jul 7;95(14):8239-44. doi: 10.1073/pnas.95.14.8239.
6
A new member of the ETS family fused to EWS in Ewing tumors.
Oncogene. 1997 Mar 13;14(10):1159-64. doi: 10.1038/sj.onc.1200933.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验