Suppr超能文献

用于运动控制和动态控制的内部模型的自主学习。

Independent learning of internal models for kinematic and dynamic control of reaching.

作者信息

Krakauer J W, Ghilardi M F, Ghez C

机构信息

Department of Neurology, Columbia University College of Physicians and Surgeons, 630 West 168th Street, New York, New York 10032, USA.

出版信息

Nat Neurosci. 1999 Nov;2(11):1026-31. doi: 10.1038/14826.

Abstract

Psychophysical studies of reaching movements suggest that hand kinematics are learned from errors in extent and direction in an extrinsic coordinate system, whereas dynamics are learned from proprioceptive errors in an intrinsic coordinate system. We examined consolidation and interference to determine if these two forms of learning were independent. Learning and consolidation of two novel transformations, a rotated spatial reference frame and altered intersegmental dynamics, did not interfere with each other and consolidated in parallel. Thus separate kinematic and dynamic models were constructed simultaneously based on errors computed in different coordinate frames, and possibly, in different sensory modalities, using separate working-memory systems. These results suggest that computational approaches to motor learning should include two separate performance errors rather than one.

摘要

对伸手动作的心理物理学研究表明,手部运动学是从外在坐标系中范围和方向的误差中学习而来的,而动力学则是从内在坐标系中的本体感觉误差中学习而来的。我们研究了巩固和干扰,以确定这两种学习形式是否相互独立。对两种新的变换(旋转的空间参考系和改变的节段间动力学)的学习和巩固并没有相互干扰,而是并行巩固。因此,基于在不同坐标系中计算出的误差,可能还使用了不同的感觉模态,并利用单独的工作记忆系统,同时构建了独立的运动学和动力学模型。这些结果表明,运动学习的计算方法应该包括两个单独的表现误差,而不是一个。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验