Modis Y, Wierenga R K
European Molecular Biology Laboratory, Postfach 10.2209, D-69012, Heidelberg, Germany.
Structure. 1999 Oct 15;7(10):1279-90. doi: 10.1016/s0969-2126(00)80061-1.
Thiolases are ubiquitous and form a large family of dimeric or tetrameric enzymes with a conserved, five-layered alphabetaalphabetaalpha catalytic domain. Thiolases can function either degradatively, in the beta-oxidation pathway of fatty acids, or biosynthetically. Biosynthetic thiolases catalyze the biological Claisen condensation of two molecules of acetyl-CoA to form acetoacetyl-CoA. This is one of the fundamental categories of carbon skeletal assembly patterns in biological systems and is the first step in a wide range of biosynthetic pathways, including those that generate cholesterol, steroid hormones, and various energy-storage molecules.
The crystal structure of the tetrameric biosynthetic thiolase from Zoogloea ramigera has been determined at 2.0 A resolution. The structure contains a striking and novel 'cage-like' tetramerization motif, which allows for some hinge motion of the two tight dimers with respect to each other. The protein crystals were flash-frozen after a short soak with the enzyme's substrate, acetoacetyl-CoA. A reaction intermediate was thus trapped: the enzyme tetramer is acetylated at Cys89 and has a CoA molecule bound in each of its active-site pockets.
The shape of the substrate-binding pocket reveals the basis for the short-chain substrate specificity of the enzyme. The active-site architecture, and in particular the position of the covalently attached acetyl group, allow a more detailed reaction mechanism to be proposed in which Cys378 is involved in both steps of the reaction. The structure also suggests an important role for the thioester oxygen atom of the acetylated enzyme in catalysis.
硫解酶广泛存在,形成了一个由二聚体或四聚体酶组成的大家族,具有保守的五层αβ-αβ-α催化结构域。硫解酶既可以在脂肪酸的β-氧化途径中发挥降解功能,也可以进行生物合成。生物合成硫解酶催化两分子乙酰辅酶A的生物克莱森缩合反应,形成乙酰乙酰辅酶A。这是生物系统中碳骨架组装模式的基本类别之一,也是包括生成胆固醇、类固醇激素和各种能量储存分子在内的多种生物合成途径的第一步。
已确定来自生枝动胶菌的四聚体生物合成硫解酶的晶体结构,分辨率为2.0埃。该结构包含一个引人注目的新型“笼状”四聚化基序,使得两个紧密二聚体能够相对于彼此进行一些铰链运动。在用该酶的底物乙酰乙酰辅酶A短暂浸泡后,蛋白质晶体被快速冷冻。因此捕获了一个反应中间体:酶四聚体在Cys89处被乙酰化,并且在其每个活性位点口袋中都结合有一个辅酶A分子。
底物结合口袋的形状揭示了该酶对短链底物特异性的基础。活性位点结构,特别是共价连接的乙酰基的位置,使得能够提出一个更详细的反应机制,其中Cys378参与反应的两个步骤。该结构还表明乙酰化酶的硫酯氧原子在催化中起重要作用。