Declercq J P, Evrard C, Lamzin V, Parello J
Université Catholique de Louvain, Unité CPMC, Louvain-la-Neuve, Belgium.
Protein Sci. 1999 Oct;8(10):2194-204. doi: 10.1110/ps.8.10.2194.
Several crystal structures of parvalbumin (Parv), a typical EF-hand protein, have been reported so far for different species with the best resolution achieving 1.5 A. Using a crystal grown under microgravity conditions, cryotechniques (100 K), and synchrotron radiation, it has now been possible to determine the crystal structure of the fully Ca2+-loaded form of pike (component pI 4.10) Parv.Ca2 at atomic resolution (0.91 A). The availability of such a high quality structure offers the opportunity to contribute to the definition of the validation tools useful for the refinement of protein crystal structures determined to lower resolution. Besides a better definition of most of the elements in the protein three-dimensional structure than in previous studies, the high accuracy thus achieved allows the detection of well-defined alternate conformations, which are observed for 16 residues out of 107 in total. Among them, six occupy an internal position within the hydrophobic core and converge toward two small buried cavities with a total volume of about 60 A3. There is no indication of any water molecule present in these cavities. It is probable that at temperatures of physiological conditions there is a dynamic interconversion between these alternate conformations in an energy-barrier dependent manner. Such motions for which the amplitudes are provided by the present study will be associated with a time-dependent remodeling of the void internal space as part of a slow dynamics regime (millisecond timescales) of the parvalbumin molecule. The relevance of such internal dynamics to function is discussed.
到目前为止,已经报道了几种不同物种的典型EF手型蛋白小清蛋白(Parv)的晶体结构,其中分辨率最高达到1.5埃。利用在微重力条件下生长的晶体、低温技术(100K)和同步辐射,现已能够在原子分辨率(0.91埃)下确定完全负载Ca2+的梭子鱼(组分pI 4.10)小清蛋白Ca2的晶体结构。如此高质量结构的可得性为有助于定义用于完善低分辨率蛋白质晶体结构的验证工具提供了机会。除了比以往研究更清晰地定义蛋白质三维结构中的大多数元素外,如此高的精度还能够检测到明确的交替构象,总共107个残基中有16个残基存在这种交替构象。其中,6个位于疏水核心内部,并汇聚到两个总体积约为60埃3的小埋藏腔中。没有迹象表明这些腔中有任何水分子。在生理条件温度下,这些交替构象之间可能以能量屏障依赖的方式进行动态相互转换。本研究提供了振幅的这种运动将与小清蛋白分子慢动力学状态(毫秒时间尺度)的一部分——空的内部空间的时间依赖性重塑相关。讨论了这种内部动力学与功能的相关性。