Suppr超能文献

枯草芽孢杆菌Δ5去饱和酶低温诱导des基因的转录调控

Transcriptional control of the low-temperature-inducible des gene, encoding the delta5 desaturase of Bacillus subtilis.

作者信息

Aguilar P S, Lopez P, de Mendoza D

机构信息

Instituto de Biología Molecular y Celular de Rosario (IBR) and Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, 2000-Rosario, Argentina.

出版信息

J Bacteriol. 1999 Nov;181(22):7028-33. doi: 10.1128/JB.181.22.7028-7033.1999.

Abstract

The Bacillus subtilis des gene encodes the cold-inducible Delta5 lipid desaturase involved in the formation of unsaturated fatty acids from saturated phospholipid precursors. Here, we describe the expression pattern of the des gene in response to a temperature downshift from 37 to 20 degrees C. We found that the synthesis of des mRNA is undetectable at 37 degrees C but dramatically induced upon the temperature downshift. Decay characteristics of the des transcript as well as the in vivo decay of B. subtilis bulk mRNA were investigated. The results showed that the stability of the des transcript as well as of bulk mRNA lasted substantially longer at 20 degrees C than at 37 degrees C. Functional expression of des at 37 degrees C was achieved by exchanging its promoter with the non-cold shock spac promoter. These data provide the first direct evidence that temperature-mediated control of transcription is the major mechanism regulating the mRNA levels of the B. subtilis desaturase. The present results also demonstrate that the only component of the desaturation system regulated by temperature is the desaturase enzyme.

摘要

枯草芽孢杆菌des基因编码参与从饱和磷脂前体形成不饱和脂肪酸的冷诱导Δ5脂质去饱和酶。在此,我们描述了des基因在温度从37℃降至20℃时的表达模式。我们发现,在37℃时检测不到des mRNA的合成,但在温度下降时会显著诱导。研究了des转录本的衰变特征以及枯草芽孢杆菌总mRNA的体内衰变。结果表明,des转录本以及总mRNA的稳定性在20℃时比在37℃时持续长得多。通过将其启动子与非冷休克spac启动子交换,实现了des在37℃时的功能性表达。这些数据提供了首个直接证据,即温度介导的转录调控是调节枯草芽孢杆菌去饱和酶mRNA水平的主要机制。目前的结果还表明,去饱和系统中受温度调节的唯一成分是去饱和酶。

相似文献

2
A Bacillus subtilis gene induced by cold shock encodes a membrane phospholipid desaturase.
J Bacteriol. 1998 Apr;180(8):2194-200. doi: 10.1128/JB.180.8.2194-2200.1998.
4
Mechanism of membrane fluidity optimization: isothermal control of the Bacillus subtilis acyl-lipid desaturase.
Mol Microbiol. 2002 Sep;45(5):1379-88. doi: 10.1046/j.1365-2958.2002.03103.x.
6
Thermal regulation of membrane lipid fluidity by a two-component system in Bacillus subtilis.
Biochem Mol Biol Educ. 2011 Sep-Oct;39(5):362-6. doi: 10.1002/bmb.20510. Epub 2011 Jul 21.
7
Regulation of fatty acid desaturation in Bacillus subtilis.
Prostaglandins Leukot Essent Fatty Acids. 2003 Feb;68(2):187-90. doi: 10.1016/s0952-3278(02)00269-7.
8
Role of the Bacillus subtilis fatty acid desaturase in membrane adaptation during cold shock.
Mol Microbiol. 2001 Mar;39(5):1321-9. doi: 10.1111/j.1365-2958.2001.02322.x.
9
Differences in cold adaptation of Bacillus subtilis under anaerobic and aerobic conditions.
J Bacteriol. 2010 Aug;192(16):4164-71. doi: 10.1128/JB.00384-10. Epub 2010 Jun 25.
10
The Bacillus subtilis desaturase: a model to understand phospholipid modification and temperature sensing.
Arch Microbiol. 2005 May;183(4):229-35. doi: 10.1007/s00203-005-0759-8. Epub 2005 Feb 12.

引用本文的文献

1
Fatty acid synthesis and utilization in gram-positive bacteria: insights from .
Microbiol Mol Biol Rev. 2025 Jun 25;89(2):e0006923. doi: 10.1128/mmbr.00069-23. Epub 2025 May 28.
2
Unsaturated fatty acid synthesis in bacteria: Mechanisms and regulation of canonical and remarkably noncanonical pathways.
Biochimie. 2024 Mar;218:137-151. doi: 10.1016/j.biochi.2023.09.007. Epub 2023 Sep 6.
3
Adaptation of the Marine Bacterium to Low Temperature Stress.
Int J Mol Sci. 2020 Jun 18;21(12):4338. doi: 10.3390/ijms21124338.
5
Potential Influence of Staphylococcus aureus Clonal Complex 30 Genotype and Transcriptome on Hematogenous Infections.
Open Forum Infect Dis. 2015 Jun 24;2(3):ofv093. doi: 10.1093/ofid/ofv093. eCollection 2015 Sep.
8
Bacterial lipids: metabolism and membrane homeostasis.
Prog Lipid Res. 2013 Jul;52(3):249-76. doi: 10.1016/j.plipres.2013.02.002. Epub 2013 Mar 14.
9
Autoregulation of RNA helicase expression in response to temperature stress in Synechocystis sp. PCC 6803.
PLoS One. 2012;7(10):e48683. doi: 10.1371/journal.pone.0048683. Epub 2012 Oct 31.

本文引用的文献

1
TRANSFORMATION OF BIOCHEMICALLY DEFICIENT STRAINS OF BACILLUS SUBTILIS BY DEOXYRIBONUCLEATE.
Proc Natl Acad Sci U S A. 1958 Oct 15;44(10):1072-8. doi: 10.1073/pnas.44.10.1072.
2
A superfamily of proteins that contain the cold-shock domain.
Trends Biochem Sci. 1998 Aug;23(8):286-90. doi: 10.1016/s0968-0004(98)01255-9.
3
Multiple transcriptional control of the Lactococcus lactis trp operon.
J Bacteriol. 1998 Jun;180(12):3174-80. doi: 10.1128/JB.180.12.3174-3180.1998.
5
A Bacillus subtilis gene induced by cold shock encodes a membrane phospholipid desaturase.
J Bacteriol. 1998 Apr;180(8):2194-200. doi: 10.1128/JB.180.8.2194-2200.1998.
6
Cold shock and adaptation.
Bioessays. 1998 Jan;20(1):49-57. doi: 10.1002/(SICI)1521-1878(199801)20:1<49::AID-BIES8>3.0.CO;2-N.
7
The CspA family in Escherichia coli: multiple gene duplication for stress adaptation.
Mol Microbiol. 1998 Jan;27(2):247-55. doi: 10.1046/j.1365-2958.1998.00683.x.
8
Fatty acid signals in Bacillus megaterium are attenuated by cytochrome P-450-mediated hydroxylation.
Biochem J. 1997 Oct 15;327 ( Pt 2)(Pt 2):363-8. doi: 10.1042/bj3270363.
10
Molecular basis for membrane phospholipid diversity: why are there so many lipids?
Annu Rev Biochem. 1997;66:199-232. doi: 10.1146/annurev.biochem.66.1.199.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验